Option Pricing with Fractional Stochastic Volatilities and Jumps
Abstract
:1. Introduction
2. The Pricing Model and Fractional Riccati Equations
3. Model Approximation and the Derivation of the Characteristic Function
4. The Pricing Method
5. Numerical Experiments
6. Calibration
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Comte, F.; Renault, E. Long memory in continuous-time stochastic volatility models. Math. Financ. 1998, 8, 291–323. [Google Scholar] [CrossRef]
- Hassani, H.; Yarmohammadi, M.; Mashhad, L.M. Uncovering hidden insights with long-memory process detection: An in-depth overview. Risks 2023, 11, 113. [Google Scholar] [CrossRef]
- Han, Y.; Li, Z.; Liu, C. Option pricing under the fractional stochastic volatility model. Anziam, J. 2021, 63, 123–142. [Google Scholar]
- Najafi, A.; Mehrdoust, F. Conditional expectation strategy under the long memory Heston stochastic volatility model. Commun. Stat.-Simul. Comput. 2023, in press. [Google Scholar] [CrossRef]
- Alhagyan, M.; Yassen, M.F. Incorporating stochastic volatility and long memory into geometric Brownian motion model to forecast performance of Standard and Poor’s 500 index. AIMS Math. 2023, 8, 18581–18595. [Google Scholar] [CrossRef]
- Gatheral, J.; Jaisson, T.; Rosenbaum, M. Volatility is rough. Quant. Financ. 2018, 18, 933–949. [Google Scholar] [CrossRef]
- Livieri, G.; Mouti, S.; Pallavicini, A.; Rosenbaum, M. Rough volatility: Evidence from option prices. IISE Trans. 2018, 50, 767–776. [Google Scholar] [CrossRef]
- Fukasawa, M. Volatility has to be rough. Quant. Financ. 2021, 21, 1–8. [Google Scholar] [CrossRef]
- Brandi, G.; Di Matteo, T. Multiscaling and rough volatility: An empirical investigation. Int. Rev. Financ. Anal. 2022, 84, 102324. [Google Scholar] [CrossRef]
- Bates, D. Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche mark options. Rev. Financ. Stud. 1996, 9, 69–107. [Google Scholar] [CrossRef]
- Kou, S.G. A jump-diffusion model for option pricing. Manag. Sci. 2002, 48, 1086–1101. [Google Scholar] [CrossRef]
- Cai, N.; Kou, S.G. Option pricing under a mixed-exponential jump diffusion model. Manag. Sci. 2011, 57, 2067–2081. [Google Scholar] [CrossRef]
- Coqueret, G.; Tavin, B. An investigation of model risk in a market with jumps and stochastic volatility. Eur. J. Oper. Res. 2016, 253, 648–658. [Google Scholar] [CrossRef]
- Jin, X.; Hong, Y. Jump-diffusion volatility models for variance swaps: An empirical performance analysis. Int. Rev. Financ. Anal. 2023, 87, 102606. [Google Scholar] [CrossRef]
- Bates, D.S. Empirical option pricing models. Annu. Rev. Financ. Econ. 2022, 14, 369–389. [Google Scholar] [CrossRef]
- Christoffersen, P.; Heston, S.; Jacobs, K. The shape and term structure of the index option smirk: Why multifactor stochastic volatility models work so well. Manag. Sci. 2009, 55, 1914–1932. [Google Scholar] [CrossRef]
- Bayer, C.; Friz, P.K.; Gulisashvili, A.; Horvath, B.; Stemper, B. Short-time near-the-money skew in rough fractional volatility models. Quant. Financ. 2019, 19, 779–798. [Google Scholar] [CrossRef]
- Bennedsen, M.; Lunde, A.; Pakkanen, M.S. Hybrid scheme for Brownian semistationary processes. Financ. Stoch. 2017, 21, 931–965. [Google Scholar] [CrossRef]
- Fukasawa, M.; Hirano, A. Refinement by reducing and reusing random numbers of the hybrid scheme for Brownian semistationary processes. Quant. Financ. 2021, 21, 1127–1146. [Google Scholar] [CrossRef]
- Mehrdoust, F.; Najafi, A.R.; Fallah, S.; Samimi, O. Mixed fractional Heston model and the pricing of American options. J. Comput. Appl. Math. 2018, 330, 141–154. [Google Scholar] [CrossRef]
- Chronopoulou, A.; Spiliopoulos, K. Sequential Monte Carlo for fractional stochastic volatility models. Quant. Financ. 2018, 18, 507–517. [Google Scholar] [CrossRef]
- Ma, J.T.; Wu, H.F. A fast algorithm for simulation of rough volatility models. Quant. Financ. 2022, 22, 447–462. [Google Scholar] [CrossRef]
- Zhang, S.M.; Sun, Y.D. Forward starting options pricing with double stochastic volatility, stochastic interest rates and double jumps. J. Comput. Appl. Math. 2017, 325, 34–41. [Google Scholar] [CrossRef]
- Zhang, S.M.; Geng, J.H. Fourier-cosine method for pricing forward starting options with stochastic volatility and jumps. Commun. Stat.-Theory Methods 2017, 46, 9995–10004. [Google Scholar] [CrossRef]
- Carr, P.P.; Madan, D.B. Option valuation using the fast Fourier transform. J. Comput. Financ. 2001, 2, 61–73. [Google Scholar] [CrossRef]
- Jackson, K.R.; Jaimungal, S.; Surkov, V. Fourier space time-stepping for option pricing with Lévy models. J. Comput. Financ. 2008, 12, 1–29. [Google Scholar] [CrossRef]
- Lord, R.; Fang, F.; Bervoets, G.; Oosterlee, C.W. A fast and accurate FFT-based method for pricing early-exercise options under Lévy processes. SIAM J. Sci. Comput. 2008, 30, 1678–1705. [Google Scholar] [CrossRef]
- Fang, F.; Oosterlee, C.W. A novel pricing method for European options based on Fourier cosine series expansions. SIAM J. Sci. Comput. 2008, 31, 826–848. [Google Scholar] [CrossRef]
- Kienitz, J.; Wetterau, D. Financial Modeling: Theory, Implementation and Practice (with Matlab Source); John Wiley & Sons Ltd.: Chichester, UK, 2012. [Google Scholar]
- Heston, S.L. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 1993, 6, 327–343. [Google Scholar] [CrossRef]
- Duffie, D.; Pan, J.; Singleton, K. Transform analysis and asset pricing for affine jump-diffusions. Econometrica 2000, 68, 1343–1376. [Google Scholar] [CrossRef]
- Comte, F.; Coutin, L.; Renault, E. Affine fractional stochastic volatility models. Ann. Financ. 2012, 8, 337–378. [Google Scholar] [CrossRef]
- Euch, O.E.; Rosenbaum, M. The characteristic function of rough Heston models. Math. Financ. 2019, 29, 3–38. [Google Scholar] [CrossRef]
- Dumitru, B.; Kai, D.; Enrico, S. Fractional Calculus: Models and Numerical Methods; World Scientific: Singapore, 2012. [Google Scholar]
- Diethelm, K.; Ford, N.J.; Freed, A.D. Detailed error analysis for a fractional Adams method. Numer. Algorithms 2004, 36, 31–52. [Google Scholar] [CrossRef]
- Li, C.; Tao, C. On the fractional Adams method. Comput. Math. Appl. 2009, 58, 1573–1588. [Google Scholar] [CrossRef]
- Jeng, S.W.; Kilicman, A. Fractional Riccati equation and its applications to rough Heston model using numerical methods. Symmetry 2020, 12, 959. [Google Scholar] [CrossRef]
- Cang, J.; Tan, Y.; Xu, H.; Liao, S.J. Series solutions of non-linear Riccati differential equations with fractional order. Chaos Solitons Fractals 2009, 40, 1–9. [Google Scholar] [CrossRef]
- Jaber, E.A.; El Euch, O. Multifactor approximation of rough volatility models. SIAM J. Financ. Math. 2019, 10, 309–349. [Google Scholar] [CrossRef]
- Jeng, S.W.; Kilicman, A. Series expansion and fourth-order global Pade approximation for a rough Heston solution. Mathematics 2020, 8, 1968. [Google Scholar] [CrossRef]
- Callegaro, G.; Grasselli, M.; Paèes, G. Fast hybrid schemes for fractional Riccati equations (rough is not so tough). Math. Oper. Res. 2021, 46, 221–254. [Google Scholar] [CrossRef]
- Wang, L.; Xia, W.X. Power-type derivatives for rough volatility with jumps. J. Futures Mark. 2022, 42, 1369–1406. [Google Scholar] [CrossRef]
- Wang, K.; Guo, X.X. Valuations of variance and volatility swaps under double Heston jump-difusion model with approximative fractional stochastic volatility. Comput. Econ. 2023, 1–31. [Google Scholar] [CrossRef]
- Alhagyan, M. The effects of incorporating memory and stochastic volatility into GBM to forecast exchange rates of Euro. Alex. Eng. J. 2022, 61, 9601–9608. [Google Scholar] [CrossRef]
- Hassler, U.; Pohle, M.O. Forecasting under long memory. J. Financ. Econom. 2023, 21, 742–778. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Van Ness, J.W. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 1968, 10, 422–437. [Google Scholar] [CrossRef]
- Thao, T.H. An approximate approach to fractional analysis for finance. Nonlinear Anal.-Real World Appl. 2006, 7, 124–132. [Google Scholar] [CrossRef]
- Bakshi, G.; Cao, C.; Chen, Z. Empirical performance of alternative option pricing models. J. Comput. Financ. 1997, 52, 2003–2049. [Google Scholar] [CrossRef]
- Black, F.; Scholes, M. The pricing of options and corporate liabilities. J. Polit. Econ. 1973, 81, 637–654. [Google Scholar] [CrossRef]
T | K | COS-Based | Numerical Integration | Relative Error (%) |
---|---|---|---|---|
1/6 | 80 | 0.1549 | 0.1552 | 0.1932 |
90 | 1.1364 | 1.1372 | 0.0703 | |
100 | 4.4949 | 4.4955 | 0.0133 | |
110 | 11.0961 | 11.0977 | 0.0144 | |
120 | 19.9605 | 19.9611 | 0.0030 | |
1/3 | 80 | 0.6740 | 0.6740 | 0.0000 |
90 | 2.4705 | 2.4705 | 0.0000 | |
100 | 6.3438 | 6.3441 | 0.0047 | |
110 | 12.5395 | 12.5403 | 0.0063 | |
120 | 20.5791 | 20.5803 | 0.0058 | |
1 | 80 | 3.0690 | 3.0694 | 0.0130 |
90 | 6.1746 | 6.1748 | 0.0032 | |
100 | 10.6786 | 10.6789 | 0.0028 | |
110 | 16.5152 | 16.5158 | 0.0036 | |
120 | 23.4920 | 23.4927 | 0.0029 | |
CPU(s) | 0.0203 | 0.0590 |
Model | Calibrated Parameters | IVMSE | ||||
---|---|---|---|---|---|---|
FDHestonMEM | 1.871 × 10−7 | |||||
2.2996 | 0.0030 | 1.9964 | 0.1362 | −0.8256 | ||
6.5578 | 0.0525 | 0.3669 | 0.0003 | −0.8398 | ||
0.0835 | 0.0613 | 1.3330 | −0.2727 | 0.5010 | ||
19.5024 | 5.4490 | 3.7212 | 44.2041 | 0.5615 | ||
DHestonMEM | 4.611 × 10−6 | |||||
9.7200 | 0.0563 | 0.9344 | 0.1268 | −0.9990 | ||
0.0483 | 0.0001 | 1.9998 | 0.0218 | −0.8584 | ||
0.0340 | 0.0001 | −1.4998 | −1.4999 | |||
49.9987 | 36.6669 | 0.0007 | 2.0791 | |||
DHeston | 1.354 × 10−5 | |||||
5.5884 | 0.0001 | 2.0000 | 0.1296 | −0.5705 | ||
49.9998 | 0.0545 | 0.7846 | 0.0001 | −0.9990 |
H1 | H2 | K = 90 | K = 95 | K = 100 | K = 105 | K = 110 |
---|---|---|---|---|---|---|
0.5 | 0.5 | 11.5108 | 7.4557 | 3.9959 | 1.5274 | 0.3555 |
0.7 | 11.5076 | 7.4498 | 3.9847 | 1.5336 | 0.3752 | |
0.9 | 11.5087 | 7.4475 | 3.9802 | 1.5338 | 0.3829 | |
0.7 | 0.5 | 11.3069 | 7.4416 | 4.3262 | 2.1219 | 0.8242 |
0.7 | 11.3157 | 7.4375 | 4.3241 | 2.1248 | 0.8319 | |
0.9 | 11.3142 | 7.4359 | 4.3231 | 2.1257 | 0.8349 | |
0.9 | 0.5 | 11.2427 | 7.3702 | 4.3785 | 2.2998 | 1.0494 |
0.7 | 11.2370 | 7.3670 | 4.3786 | 2.3042 | 1.0556 | |
0.9 | 11.2351 | 7.3656 | 4.3783 | 2.3052 | 1.0581 |
H1 | H2 | K = 90 | K = 95 | K = 100 | K = 105 | K = 110 |
---|---|---|---|---|---|---|
0.5 | 0.5 | 15.3978 | 11.8241 | 8.6928 | 6.0735 | 4.0090 |
0.7 | 15.2890 | 11.7394 | 8.6628 | 6.1228 | 4.1395 | |
0.9 | 15.2387 | 11.6951 | 8.6399 | 6.1317 | 4.1787 | |
0.7 | 0.5 | 16.1668 | 12.8459 | 9.9003 | 7.3818 | 5.2935 |
0.7 | 16.1008 | 12.7909 | 9.8729 | 7.3945 | 5.3530 | |
0.9 | 16.0737 | 12.7620 | 9.8544 | 7.3878 | 5.3707 | |
0.9 | 0.5 | 16.2248 | 13.1038 | 10.3685 | 8.0256 | 6.0706 |
0.7 | 16.1893 | 13.0825 | 10.3689 | 8.0524 | 6.1243 | |
0.9 | 16.1719 | 13.0697 | 10.3638 | 8.0577 | 6.1404 |
H1 | H2 | K = 90 | K = 95 | K = 100 | K = 105 | K = 110 |
---|---|---|---|---|---|---|
0.5 | 0.5 | 18.2460 | 14.9885 | 12.0797 | 9.5364 | 7.3693 |
0.7 | 18.1232 | 14.9111 | 12.0650 | 9.5987 | 7.5113 | |
0.9 | 18.0631 | 14.8668 | 12.0457 | 9.6101 | 7.5555 | |
0.7 | 0.5 | 19.1446 | 16.0248 | 13.2149 | 10.7264 | 8.5628 |
0.7 | 19.0513 | 15.9598 | 13.1917 | 10.7563 | 8.6512 | |
0.9 | 19.0054 | 15.9238 | 13.1716 | 10.7572 | 8.6756 | |
0.9 | 0.5 | 19.4468 | 16.4862 | 13.8282 | 11.4717 | 9.4085 |
0.7 | 19.3918 | 16.4585 | 13.8324 | 11.5107 | 9.4860 | |
0.9 | 19.3636 | 16.4392 | 13.8257 | 11.5175 | 9.5084 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Yong, H.; Xiao, H. Option Pricing with Fractional Stochastic Volatilities and Jumps. Fractal Fract. 2023, 7, 680. https://doi.org/10.3390/fractalfract7090680
Zhang S, Yong H, Xiao H. Option Pricing with Fractional Stochastic Volatilities and Jumps. Fractal and Fractional. 2023; 7(9):680. https://doi.org/10.3390/fractalfract7090680
Chicago/Turabian StyleZhang, Sumei, Hongquan Yong, and Haiyang Xiao. 2023. "Option Pricing with Fractional Stochastic Volatilities and Jumps" Fractal and Fractional 7, no. 9: 680. https://doi.org/10.3390/fractalfract7090680
APA StyleZhang, S., Yong, H., & Xiao, H. (2023). Option Pricing with Fractional Stochastic Volatilities and Jumps. Fractal and Fractional, 7(9), 680. https://doi.org/10.3390/fractalfract7090680