On the Generalization of Ostrowski-Type Integral Inequalities via Fractional Integral Operators with Application to Error Bounds
Abstract
:1. Introduction
2. Main Result
3. Application
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ostrowski, A. Über die Absolutabweichung einer dierentierbaren Funktion von ihren Integralmittelwert. Comment. Math. Helv. 1938, 10, 226–227. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Rassias, T.M. Ostrowski-Type Inequalities and Applications in Numerical Integration; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2002. [Google Scholar]
- Set, E. New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63, 1147–1154. [Google Scholar] [CrossRef]
- Liu, W. Some Ostrowski type inequalities via Riemann-Liouville fractional integrals for h-convex functions. arXiv 2012, arXiv:1210.3942. [Google Scholar]
- Kermausuor, S. Ostrowski type inequalities for functions whose derivatives are strongly (α,m)-convex via k-Riemann-Liouville fractional integrals. Stud. Univ. Babes-Bolyai Math. 2019, 64, 25–34. [Google Scholar] [CrossRef]
- Lakhal, F. Ostrowski type inequalities for k-β-convex functions via Riemann—Liouville k-fractional integrals. Rend. Circ. Mat. Palermo Ser. 2021, 70, 1561–1571. [Google Scholar] [CrossRef]
- Al-Deeb, A.; Awrejcewicz, J. Ostrowski-Trapezoid-Grüss-type on (q,d)-Hahn difference operator. Symmetry 2022, 14, 1776. [Google Scholar] [CrossRef]
- Gürbüz, M.; Taşdan, Y.; Set, E. Ostrowski type inequalities via the Katugampola fractional integrals. AMIS Math. 2020, 5, 42–53. [Google Scholar] [CrossRef]
- Basci, Y.; Baleanu, D. Ostrowski type inequalities involving ψ-hilfer fractional integrals. Mathematics 2019, 7, 770. [Google Scholar] [CrossRef]
- Faisal, S.; Khan, M.A.; Khan, T.U.; Saeed, T.; Alshehri, A.M.; Nwaeze, E.R. New ”conticrete” Hermite–Hadamard-Jensen-Mercer fractional inequalities. Symmetry 2022, 14, 294. [Google Scholar] [CrossRef]
- Almutairi, O.; Kilicman, A. A review of Hermite-Hadamard inequality for α-type real-valued convex functions. Symmetry 2022, 14, 840. [Google Scholar] [CrossRef]
- Farid, G.; Mubeen, S.; Set, E. Fractional inequalities associated with a generalized Mittag-Leffler function and applications. Filomat 2020, 34, 2683–2692. [Google Scholar] [CrossRef]
- Samraiz, M.; Mehmood, A.; Naheed, S.; Rahman, G.; Kashuri, A.; Nonlaopon, K. On Novel Fractional Operators Involving the Multivariate Mittag–Leffler Function. Mathematics 2022, 10, 3991. [Google Scholar] [CrossRef]
- Nazir, A.; Rahman, G.; Ali, A.; Naheed, S.; Nisar, K.S.; Albalawi, W.; Zahran, H.Y. On generalized fractional integral with multivariate Mittag-Leffler function and its applications. Alex. Eng. J. 2022, 61, 9187–9201. [Google Scholar] [CrossRef]
- Shukla, A.K.; Prajapati, J.C. On a generalization of Mittag-Leffler functions and its properties. J. Math. Anal. Appl. 2007, 336, 797–811. [Google Scholar] [CrossRef]
- Salim, T.O.; Faraj, A.W. A generalization of Mittag-Leffler function and integral operator associated with integral calculus. J. Fract. Calc. Appl. 2012, 3, 1–13. [Google Scholar]
- Farid, G.; Khan, K.A.; Latif, N.; Rehman, A.U.; Mehmood, S. General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Lefller function. J. Inequal. Appl. 2018, 2018, 243. [Google Scholar] [CrossRef]
- Kang, S.M.; Farid, G.; Nazeer, W.; Tariq, B. Hadamard and Fejér-Hadamard inequalities for extended generalized fractional integrals involving special functions. J. Inequal. Appl. 2018, 2018, 119. [Google Scholar] [CrossRef]
- Shao, Y.; Elmasry, Y.; Rahman, G.; Samraiz, M.; Kashuri, A.; Nonlaopon, K. The Grüss-Type and Some Other Related Inequalities via Fractional Integral with Respect to Multivariate Mittag-Leffler Function. Fractal Fract. 2022, 6, 546. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A singular Integral equation with a generalized Mittag Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Saxena, R.K.; Kalla, S.L.; Saxena, R. Multivariate analogue of generalized Mittag-Leffler function. Integral Trans. Spec. Func. 2011, 22, 533–548. [Google Scholar] [CrossRef]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: London, UK, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Basel, Switzerland, 1993. [Google Scholar]
- Farid, G. Some new Ostrowski type inequalities via fractional integrals. Int. J. Anal. Appl. 2017, 14, 64–68. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, G.; Vivas-Cortez, M.; Yildiz, Ç.; Samraiz, M.; Mubeen, S.; Yassen, M.F. On the Generalization of Ostrowski-Type Integral Inequalities via Fractional Integral Operators with Application to Error Bounds. Fractal Fract. 2023, 7, 683. https://doi.org/10.3390/fractalfract7090683
Rahman G, Vivas-Cortez M, Yildiz Ç, Samraiz M, Mubeen S, Yassen MF. On the Generalization of Ostrowski-Type Integral Inequalities via Fractional Integral Operators with Application to Error Bounds. Fractal and Fractional. 2023; 7(9):683. https://doi.org/10.3390/fractalfract7090683
Chicago/Turabian StyleRahman, Gauhar, Miguel Vivas-Cortez, Çetin Yildiz, Muhammad Samraiz, Shahid Mubeen, and Mansour F. Yassen. 2023. "On the Generalization of Ostrowski-Type Integral Inequalities via Fractional Integral Operators with Application to Error Bounds" Fractal and Fractional 7, no. 9: 683. https://doi.org/10.3390/fractalfract7090683
APA StyleRahman, G., Vivas-Cortez, M., Yildiz, Ç., Samraiz, M., Mubeen, S., & Yassen, M. F. (2023). On the Generalization of Ostrowski-Type Integral Inequalities via Fractional Integral Operators with Application to Error Bounds. Fractal and Fractional, 7(9), 683. https://doi.org/10.3390/fractalfract7090683