Next Article in Journal
An Enhanced Numerical Iterative Method for Expanding the Attraction Basins When Computing Matrix Signs of Invertible Matrices
Next Article in Special Issue
On q-Hermite–Hadamard Type Inequalities via s-Convexity and (α,m)-Convexity
Previous Article in Journal
Synchronization of Fractional-Order Delayed Neural Networks Using Dynamic-Free Adaptive Sliding Mode Control
Previous Article in Special Issue
New Estimates on Hermite–Hadamard Type Inequalities via Generalized Tempered Fractional Integrals for Convex Functions with Applications
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On the Generalization of Ostrowski-Type Integral Inequalities via Fractional Integral Operators with Application to Error Bounds

1
Department of Mathematics and Statistics, Hazara University, Mansehra 21300, Pakistan
2
Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Quito 170143, Ecuador
3
Department of Mathematics, K.K. Education Faculty, Atatürk University, Erzurum 25240, Turkey
4
Department of Mathematics, University of Sargodha, Sargodha 40100, Pakistan
5
Department of Mathematics, College of Science and Humanities in Al-Aflaj, Prince Sattam bin Abdulaziz University, Al-Kharj 11912, Saudi Arabia
6
Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Damietta, Egypt
*
Authors to whom correspondence should be addressed.
Fractal Fract. 2023, 7(9), 683; https://doi.org/10.3390/fractalfract7090683
Submission received: 27 July 2023 / Revised: 10 August 2023 / Accepted: 11 August 2023 / Published: 14 September 2023
(This article belongs to the Special Issue Fractional Integral Inequalities and Applications, 2nd Edition)

Abstract

:
The Ostrowski inequality expresses bounds on the deviation of a function from its integral mean. The Ostrowski’s type inequality is frequently used to investigate errors in numerical quadrature rules and computations. In this work, Ostrowski-type inequality is demonstrated using the generalized fractional integral operators. From an application perspective, we present the bounds of the fractional Hadamard inequalities. The results that are being presented involve a number of fractional inequalities that are already known and have been published.
MSC:
26A33; 26A51; 33E12

1. Introduction

Numerous mathematical problems, including approximation theory, spectral analysis, statistical analysis, and the concept of distributions, involve the use of integral inequalities. Integral inequalities play a significant role in many branches of science and engineering. Since integral inequalities and their applications are vital to the theory of differential equations and applied mathematics, there has been a significant rise in interest in the study of numerous classical inequalities applied to integral operators associated with various kinds of fractional derivatives in recent years.
The Ostrowski inequality is named after the Polish mathematician Aleksander Ostrowski, who first proved the inequality in 1938. The inequality has since been extended and generalized to various settings, including fractional calculus and multivariate functions.
One important application of the Ostrowski inequality is in the analysis of numerical quadrature rules, which are methods for approximating definite integrals numerically. The inequality can be used to estimate the error in a quadrature rule by providing an upper bound on the deviation of the approximating function from the actual integrand.
The Ostrowski inequality has also been used in the study of differential equations, particularly in the proof of existence and uniqueness theorems for solutions of ordinary and partial differential equations. The inequality provides a tool for estimating the difference between two solutions of a differential equation, which is necessary for proving the convergence and stability properties of numerical methods for solving these equations.
In recent years, the Ostrowski inequality has also been extended to the setting of fractional calculus, which deals with derivatives and integrals of non-integer orders. Fractional versions of the Ostrowski inequality have been used in the study of fractional differential equations and in the development of numerical methods for solving these equations.
Ostrowski [1] introduced the following inequality known as the Ostrowski inequality.
Theorem 1. 
Suppose that the mapping G : I R is differentiable in I 0 , where I 0 denotes the interior of I, and let r , s I 0 with r < s . If | G ( τ ) | K for all t [ r , s ] , then we have
G ( θ ) 1 s 1 r s G ( τ ) d τ K ( s r ) 1 4 + ( θ r + s 2 ) 2 ( s r ) 2 .
The Ostrowski inequality (1) gives the boundedness of the difference between the values of G ( θ ) at an arbitrary value θ [ r , s ] and its integral mean and 1 s 1 r s G ( τ ) d τ shows the boundedness of G . From an application point of view, this inequality (1) provides the error bounds of the midpoint and trapezoidal quadrature rules and some of its applications to special means [2].
Using various convex functions, several researchers have recently examined classical inequalities for different kinds of fractional integrals. For instance, using s-convex and h-convex functions, Set [3] and Liu [4] demonstrated the Ostrowski-type inequality for Riemann–Liouville fractional integrals. The Ostrowski-type inequalities for Riemann–Liouville k-fractional integrals were provided by Kermausuor [5] and Lakhal [6] via strongly ( a , m ) -convex functions and k b e t a -convex functions.
By using convex and A G -convex functions, Deeb and Awrejcewicz [7] demonstrated the Ostrowski–Trapezoid–Grüss-type difference operator of ( q , d ) -Hahn type. By using p-convex functions, Gürbüz et al. [8] provided the Ostrowski-type inequalities for Katugampola fractional integrals. For Ψ -Hilfer fractional integrals, Basci and Baleanu [9] developed the Ostrowski-type inequalities. Hermite–Hadamard–Jensen–Mercer fractional inequalities for convex functions were established by Faisal et al. in [10], and related inequalities for a l p h a -type real-valued convex functions were also provided in [11]. The Ostrowski-type inequalities for fractional integrals incorporating an extended modified Mittag–Leffler function were developed by Farid et al. in [12].
The Mittag–Leffler function, on the other hand, is essential for resolving fractional differential equations. In last few decades, various types of fractional integrals have been developed by using Mittag–Leffler functions in the kernel [13,14,15,16]. Several inequalities for different fractional integrals comprising the Mittag–Leffler function have been established by researchers [17,18,19].
The three-parameter M-L function is defined by [20] as follows:
ε a , b c ( z 1 ) = l = 0 ( c ) l Γ ( a l + b ) z 1 l l ! ( a , b , λ C ; ( a ) > 0 , ( b ) > 0 ) .
The multivariate M-L function is defined by [21] as
E ( σ j ) , ζ ( γ j ) ( z 1 , z 2 , , z j ) = E ( σ 1 , σ 2 , , σ j ) , ζ ( γ 1 , γ 2 , , γ j ) ( z 1 , z 2 , z j ) = m 1 , m 2 m j = 0 ( γ 1 ) m 1 ( γ 2 ) m 2 ( γ j ) m j ( z 1 ) m 1 ( z ) m j Γ ( σ 1 m 1 + σ 2 m 2 + σ j m j + ζ ) m 1 ! m j ! ,
where z i , σ i , ζ , γ i C ; i = 1 , 2 , , j , ( σ i ) > 0 , ( ζ ) > 0 and ( γ i ) > 0 .
The Riemann–Liouville (R-L) fractional integral (left and right sided) R r + μ and R s μ of order μ > 0 , for a function U , are, respectively, given in [22,23,24] by
R r + μ G ( θ ) = 1 Γ ( μ ) r θ ( θ τ ) μ 1 G ( τ ) d τ , r < θ
and
R s μ G ( θ ) = 1 Γ ( μ ) θ s ( τ θ ) μ 1 G ( τ ) d τ , s > τ .
The Prabhakar-type fractional integrals are defined in [20] by
( R a , b , r + c ; ϖ G ) ( θ ) = r θ ( θ τ ) μ 1 ε a , b c ( ϖ ( θ τ ) a ) G ( τ ) d τ
and
( R a , b , s c ; ϖ G ) ( θ ) = θ s ( τ θ ) μ 1 ε a , b c ( ϖ ( τ θ ) a ) G ( τ ) d τ .
The fractional integral operators having a multivariate M-L function are defined by Saxena et al. [21] as
R ( a 1 , , a j ) , b , r + ( c 1 , , c j ) , ( ϖ 1 , , ϖ j ) G ( θ ) = r θ ( θ τ ) μ 1 ε ( a i ) , b ( c i ) ( ϖ 1 ( θ τ ) a 1 ϖ j ( θ τ ) a j ) G ( τ ) d τ ,
and
R ( a 1 , , a j ) , b , s ( c 1 , , c j ) , ( ϖ 1 , , ϖ j ) G ( θ ) = θ s ( τ θ ) μ 1 ε ( a i ) , b ( c i ) ( ϖ 1 ( τ θ ) a 1 ϖ j ( τ θ ) a j ) G ( τ ) d τ ,
where μ , η i , λ i , γ i C , ( η i ) > 0 , ( μ ) > 0 , ( γ i ) > 0 for i = 1 , 2 , , j .
Remark 1. 
If we consider j = 1 in (7) and (8), then we obtain the operators defined by (5) and (6), respectively. Similarly, if we take ϖ = 0 in (7) and (8), then we have R-L operators (3) and (4), respectively.
The aim of this article is to establish Ostrowski-type fractional integral inequalities with a multivariate M-L function. From an application point of view, we present some error bounds of the Hadamard-type inequality.
This article is divided into three sections. In the first part, different forms of the M-L function and some fractional operators are given. In the second part, new inequalities and generalizations of the Ostrowski type are obtained using the multivariate M-L function. In Section 3, some applications are presented of Theorem 5 by applying it to the endpoints of the interval [ r , s ] . The conclusion of the overall work is presented in the last section.

2. Main Result

In this section, the Ostrowski-type inequality is shown using generalized fractional integral operators. From an application perspective, we present the bounds of the fractional Hadamard inequalities. Firstly, we recall the following lemma.
Lemma 1. 
[21] For the generalized multivariate M-L function defined in (2), the following relation holds true:
d d z 1 m [ z 1 b 1 ε ( a j ) , b ; p ( c j ) ( ϖ 1 z 1 a 1 , , ϖ j z 1 a j ) ) ] = z 1 b m 1 ε ( a j ) , b m ; p ( c j ) ( ϖ 1 z 1 a 1 , , ϖ j z 1 a j ) ( ( b m ) > 0 , m N ) ,
where a i , b , c i C ; ( a i ) > 0 , ( b ) > 0 , ( p ) > 0 , p 0 for i = 1 , 2 , , j .
In particular, for m = 1 , we have
d d z 1 [ z 1 b 1 ε ( a j ) , b ; p ( c j ) ( ϖ 1 z 1 a 1 , , ϖ j z 1 a j ) ) ] = z 1 b 2 ε ( a j ) , b m ; p ( c j ) ( ϖ 1 z 1 a 1 , , ϖ j z 1 a j ) ( ( b m ) > 0 , m N ) ,
Next, we present Ostrowski-type fractional integral inequalities concerning the multivariate M-L function.
Theorem 2. 
Suppose that G : I R is a differentiable mapping in I 0 , where I 0 denotes the interior of I and let r , s I 0 with r < s . If | G ( τ ) | K for all t [ r , s ] , then for α , β 1 , a i , b , c i C , where i = 1 , 2 , , j , we have
( ( s θ ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) + ( s θ ) α 1 × ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) ) G ( θ ) ( R ( a i ) , α 1 , r + ( c i ) , ( ϖ i ) G ( θ ) + R ( a i ) , β 1 , s ( c i ) , ( ϖ i ) G ( θ ) ) K ( θ r ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) + ( s θ ) β ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) ( R ( a i ) , α , r + ( c i ) , ( ϖ i ) 1 ( θ ) + R ( a i ) , β , s ( c i ) , ( ϖ i ) 1 ( θ ) ) ) .
Proof. 
Let θ [ r , s ] and τ [ r , θ ] . Then, for the multivariate M-L function, the following inequality holds:
( θ τ ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ τ ) a 1 , , ϖ j ( θ τ ) a j ) ( θ r ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) .
Now, by the given hypothesis | G ( τ ) | K and (10), we have
r θ ( K G ( τ ) ) ( θ τ ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ τ ) a 1 , , ϖ j ( θ τ ) a j ) d τ ( θ r ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) r θ ( K G ( τ ) ) d τ
and
r θ ( K + G ( τ ) ) ( θ τ ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ τ ) a 1 , , ϖ j ( θ τ ) a j ) d τ ( θ r ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) r θ ( K + G ( τ ) ) d τ .
Now, consider first (11)
K r θ ( θ τ ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ τ ) a 1 , , ϖ j ( θ τ ) a j ) d τ r θ G ( τ ) ( θ τ ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ τ ) a 1 , , ϖ j ( θ τ ) a j ) d τ ( θ r ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) r θ ( K G ( τ ) ) d τ .
Integrating by parts yields
and using (9), we have
( θ r ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) G ( θ ) R ( a i ) , α 1 , r + ( c i ) , ( ϖ i ) G ( θ ) K ( θ r ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) R ( a i ) , α , r + ( c i ) , ( ϖ i ) 1 ( θ ) .
Similarly, (12) gives
R ( a i ) , α 1 , r + ( c i ) , ( ϖ i ) G ( θ ) ( θ r ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) G ( θ ) K ( θ r ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) R ( a i ) , α , r + ( c i ) , ( ϖ i ) 1 ( θ ) .
From (13) and (14), we obtain
( θ r ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) G ( θ ) R ( a i ) , α 1 , r + ( c i ) , ( ϖ i ) G ( θ ) K ( θ r ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) R ( a i ) , α , r + ( c i ) , ( ϖ i ) 1 ( θ ) .
Again, let θ [ r , s ] , τ [ θ , s ] and β 1 . Then, for the multivariate M-L function, the following inequality holds:
( τ θ ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ϖ 1 ( τ θ ) a 1 , , ϖ j ( τ θ ) a j ( s θ ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j .
Now, by the given hypothesis | G ( τ ) | K and (16), we have
θ s ( K G ( τ ) ) ( τ θ ) β 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( τ θ ) a 1 , , ϖ j ( τ θ ) a j ) d τ ( s θ ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) θ s ( K G ( τ ) ) d τ
and
θ s ( K + G ( τ ) ) ( τ θ ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( τ θ ) a 1 , , ϖ j ( τ θ ) a j ) d τ ( s θ ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) θ s ( K + G ( τ ) ) d τ .
By applying the similar procedure as we did for (11) and (12), we obtain
( s θ ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) G ( θ ) R ( a i ) , β 1 , s ( c i ) , ( ϖ i ) G ( θ ) K ( s θ ) β ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) R ( a i ) , β , s ( c i ) , ( ϖ i ) 1 ( θ ) .
Inequalities (15) and (17) give the desired result. □
Corollary 1. 
If we consider α = β in Theorem 2, then we have
( ( s θ ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) + ( s θ ) α 1 × ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) ) G ( θ ) R ( a i ) , α 1 , r + ( c i ) , ( ϖ i ) G ( θ ) + R ( a i ) , α 1 , s ( c i ) , ( ϖ i ) G ( θ ) K ( θ r ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) + ( s θ ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) ( R ( a i ) , α , r + ( c i ) , ( ϖ i ) 1 ( θ ) + R ( a i ) , α , s ( c i ) , ( ϖ i ) 1 ( θ ) ) ) .
Remark 2. 
i. 
Applying Theorem 2 for j = 1 , we obtain a certain new inequality for the fractional integral operator pertaining to the three-parameter M-L function [20].
ii. 
Applying Theorem 2 for ϖ i = 0 leads to the result proved by [25].
iii. 
Applying Theorem 2 for α = 1 = β and ϖ i = 0 leads to inequality (1).
Theorem 3. 
Suppose that G : I R is a differentiable mapping in I 0 , where I 0 denotes the interior of I, and let r , s I 0 with r < s . If G is an integrable function and k < G ( τ ) K for all t [ r , s ] , then for α , β 1 , a i , b , c i C where i = 1 , 2 , , j , we have
( ( θ r ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) ( s θ ) β 1 × ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) ) G ( θ ) ( R ( a i ) , α 1 , r + ( c i ) , ( ϖ i ) G ( θ ) R ( a i ) , β 1 , s ( c i ) , ( ϖ i ) G ( θ ) ) ) K ( ( θ r ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) + ( s θ ) β ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) ( R ( a i ) , α , r + ( c i ) , ( ϖ i ) 1 ( θ ) + R ( a i ) , β , s ( c i ) , ( ϖ i ) 1 ( θ ) ) )
and
( ( s θ ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) ( θ r ) α 1 × ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) ) G ( θ ) + ( R ( a i ) , α 1 , r + ( c i ) , ( ϖ i ) G ( θ ) R ( a i ) , β 1 , s ( c i ) , ( ϖ i ) G ( θ ) ) k ( ( θ r ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) + ( s θ ) β ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) ( R ( a i ) , α , r + ( c i ) , ( ϖ i ) 1 ( θ ) + R ( a i ) , β , s ( c i ) , ( ϖ i ) 1 ( θ ) ) ) .
Proof. 
By the given boundedness condition of G and (10), we have
r θ ( K G ( τ ) ) ( θ τ ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ τ ) a 1 , , ϖ j ( θ τ ) a j ) d τ ( θ r ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) r θ ( K G ( τ ) ) d τ
and
r θ ( G ( τ ) k ) ( θ τ ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ τ ) a 1 , , ϖ j ( θ τ ) a j ) d τ ( θ r ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) r θ ( G ( τ ) k ) d τ .
From (20) and (21), we obtain the following inequalities, respectively, by applying integration by parts
( θ r ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) R ( a i ) , α 1 , r + ( c i ) , ( ϖ i ) G ( θ ) K ( θ r ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) R ( a i ) , α , r + ( c i ) , ( ϖ i ) 1 ( θ )
and
R ( a i ) , α 1 , r + ( c i ) , ( ϖ i ) G ( θ ) ( θ r ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) k ( θ r ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) R ( a i ) , α , r + ( c i ) , ( ϖ i ) 1 ( θ ) .
Now, by the given hypothesis k < | G ( τ ) | K and (16), we have
θ s ( K G ( τ ) ) ( τ θ ) β 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( τ θ ) a 1 , , ϖ j ( τ θ ) a j ) d τ ( s θ ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) θ s ( K G ( τ ) ) d τ
and
θ s ( G ( τ ) k ) ( τ θ ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( τ θ ) a 1 , , ϖ j ( τ θ ) a j ) d τ ( s θ ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) θ s ( G ( τ ) k ) d τ .
From (24) and (25), we obtain the following inequalities, respectively, by applying integrations by parts
R ( a i ) , β 1 , s ( c i ) , ( ϖ i ) G ( θ ) ( s θ ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) K ( s θ ) β ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) R ( a i ) , β , s ( c i ) , ( ϖ i ) 1 ( θ )
and
( s θ ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) R ( a i ) , β 1 , s ( c i ) , ( ϖ i ) G ( θ ) k ( s θ ) β ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) R ( a i ) , β , s ( c i ) , ( ϖ i ) 1 ( θ ) .
The inequalities (22) and (26) give the desired inequality (18). Similarly, the inequalities (23) and (27) give inequality (19). □
Theorem 4. 
Under the same hypothesis of Theorem 3, the following inequalities hold:
( ( θ r ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) + ( s θ ) β 1 × ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) ) G ( θ ) ( R ( a i ) , α 1 , r + ( c i ) , ( ϖ i ) G ( θ ) + R ( a i ) , β 1 , s ( c i ) , ( ϖ i ) G ( θ ) ) ) K ( ( θ r ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) R ( a i ) , α , r + ( c i ) , ( ϖ i ) 1 ) k ( ( s θ ) β ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) R ( a i ) , β , s ( c i ) , ( ϖ i ) 1 ( θ ) ) ) ,
and
( ( s θ ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) ( θ r ) α 1 × ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) ) G ( θ ) + ( R ( a i ) , α 1 , r + ( c i ) , ( ϖ i ) G ( θ ) + R ( a i ) , β 1 , s ( c i ) , ( ϖ i ) G ( θ ) ) K ( ( s θ ) β ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) R ( a i ) , β , s ( c i ) , ( ϖ i ) 1 ( θ ) ) k ( ( θ r ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) R ( a i ) , α , r + ( c i ) , ( ϖ i ) 1 ( θ ) ) .
Proof. 
The proof of inequality (28) can be proved using (22) and (27). Similarly, one can prove inequality (29) using (23) and (26). □
Theorem 5. 
Suppose that G : I R is a differentiable mapping in I 0 , where I 0 denotes the interior of I, and let r , s I 0 with r < s . If | G ( τ ) | K for all t [ r , s ] , then for α , β 1 , a i , b , c i C , where i = 1 , 2 , , j , we have
( s θ ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) G ( s ) + ( θ r ) α 1 × ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) G ( r ) ( R ( a i ) , β 1 , θ + ( c i ) , ( ϖ i ) G ( s ) + R ( a i ) , α 1 , θ ( c i ) , ( ϖ i ) G ( r ) ) K [ ( θ r ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) + ( s θ ) β ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) ( R ( a i ) , α , θ ( c i ) , ( ϖ i ) 1 ( r ) + R ( a i ) , β , θ + ( c i ) , ( ϖ i ) 1 ( s ) ) ] .
Proof. 
Let θ [ r , s ] and τ [ r , θ ] . Then, for the multivariate M-L function, the following inequality holds
( θ τ ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ τ ) a 1 , , ϖ j ( θ τ ) a j ) ( θ r ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) .
Now, by the given hypothesis | G ( τ ) | K and (10), we have
r θ ( K G ( τ ) ) ( θ τ ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ τ ) a 1 , , ϖ j ( θ τ ) a j ) d τ ( θ r ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) r θ ( K G ( τ ) ) d τ
and
r θ ( K + G ( τ ) ) ( θ τ ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ τ ) a 1 , , ϖ j ( θ τ ) a j ) d τ ( θ r ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) r θ ( K + G ( τ ) ) d τ .
Now, consider first (31)
K r θ ( θ τ ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ τ ) a 1 , , ϖ j ( θ τ ) a j ) d τ r θ G ( τ ) ( θ τ ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ τ ) a 1 , , ϖ j ( θ τ ) a j ) d τ ( θ r ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) r θ ( K G ( τ ) ) d τ .
Integrating by parts yields
R ( a i ) , α 1 , θ ( c i ) , ( ϖ i ) G ( r ) ( θ r ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) G ( r ) K ( θ r ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) R ( a i ) , α , θ ( c i ) , ( ϖ i ) 1 ( r ) .
Similarly, (32) gives
( θ r ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) G ( r ) R ( a i ) , α 1 , θ ( c i ) , ( ϖ i ) G ( r ) K ( θ r ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) R ( a i ) , α , θ ( c i ) , ( ϖ i ) 1 ( r ) .
From (33) and (34), we obtain the following:
( θ r ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) G ( r ) R ( a i ) , α 1 , θ ( c i ) , ( ϖ i ) G ( r ) K ( θ r ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) R ( a i ) , α , θ ( c i ) , ( ϖ i ) 1 ( r ) .
Again, let θ [ r , s ] , τ [ θ , s ] and β 1 . Then, for the multivariate M-L function, the following inequality holds
( τ θ ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ϖ 1 ( τ θ ) a 1 , , ϖ j ( τ θ ) a j ( s θ ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j .
Now, by the given hypothesis | G ( τ ) | K and (36), we have
θ s ( K G ( τ ) ) ( τ θ ) β 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( τ θ ) a 1 , , ϖ j ( τ θ ) a j ) d τ ( s θ ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) θ s ( K G ( τ ) ) d τ
and
θ s ( K + G ( τ ) ) ( τ θ ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( τ θ ) a 1 , , ϖ j ( τ θ ) a j ) d τ ( s θ ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) θ s ( K + G ( τ ) ) d τ .
By applying the similar procedure as we did for (31) and (32), we obtain
( s θ ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) G ( s ) R ( a i ) , β 1 , θ + ( c i ) , ( ϖ i ) G ( s ) K ( s θ ) β ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) R ( a i ) , β , θ + ( c i ) , ( ϖ i ) 1 ( s ) .
Inequalities (31) and (37) give the desired result. □
Corollary 2. 
If we consider α = β in Theorem 5, then we have
( s θ ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) G ( s ) + ( θ r ) α 1 × ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) G ( r ) ( R ( a i ) , α 1 , θ + ( c i ) , ( ϖ i ) G ( b ) + R ( a i ) , α 1 , θ ( c i ) , ( ϖ i ) G ( r ) ) K ( θ r ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( θ r ) a 1 , , ϖ j ( θ r ) a j ) + ( s θ ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( s θ ) a 1 , , ϖ j ( s θ ) a j ) ( R ( a i ) , α , θ ( c i ) , ( ϖ i ) 1 ( r ) + R ( a i ) , α , θ + ( c i ) , ( ϖ i ) 1 ( s ) ) ) .
Remark 3. 
i. 
Applying Theorem 4 for j = 1 , we obtain a certain new inequality for the fractional integral operator pertaining to the three-parameter M-L function [20].
ii. 
Applying Theorem 4 for ϖ i = 0 leads to the result proved by [25].
iii. 
Applying Theorem 4 for α = 1 = β and ϖ i = 0 leads to inequality (1).

3. Application

In this section, we present some applications of Theorem 5 by applying it to the endpoints of the interval [ r , s ] , and then the summing the resulting inequalities yields the following inequality.
Theorem 6. 
Suppose that the assumptions of Theorem 5 are satisfied, then we have
( s r ) β 1 ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s r ) a 1 , , ϖ j ( s r ) a j ) G ( s ) + ( s r ) α 1 × ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( s r ) a 1 , , ϖ j ( s r ) a j ) G ( r ) ( R ( a i ) , β 1 , r + ( c i ) , ( ϖ i ) G ( s ) + R ( a i ) , α 1 , s ( c i ) , ( ϖ i ) G ( r ) ) K ( s r ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( s r ) a 1 , , ϖ j ( s r ) a j ) + ( s r ) β ε ( a i ) , β ( c i ) , ( ϖ i ) ( ϖ 1 ( s r ) a 1 , , ϖ j ( s r ) a j ) ( R ( a i ) , α , s ( c i ) , ( ϖ i ) 1 ( r ) + R ( a i ) , β , r + ( c i ) , ( ϖ i ) 1 ( s ) ) ) .
Proof. 
By applying Theorem 5 for θ = r and θ = s , and then adding the obtained inequalities, we obtain the desired Theorem 6. □
Corollary 3. 
The error bound of the Hadamard-type inequality can be achieved by applying Theorem 6 for α = β as follows:
G ( s ) + G ( r ) 2 ( ( s r ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( s r ) a 1 , , ϖ j ( s r ) a j ) ) 1 2 ( R ( a i ) , α 1 , r + ( c i ) , ( ϖ i ) G ( s ) + R ( a i ) , α 1 , s ( c i ) , ( ϖ i ) G ( r ) ) K ( s r ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( s r ) a 1 , , ϖ j ( s r ) a j ) 1 2 ( R ( a i ) , α , s ( c i ) , ( ϖ i ) 1 ( r ) + R ( a i ) , α , r + ( c i ) , ( ϖ i ) 1 ( s ) ) ) .
Theorem 7. 
Suppose that the assumptions of Theorem 5 are satisfied, then we have
( s ( r + s 2 ) ) α 1 ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( s ( r + s 2 ) ) a 1 , , ϖ j ( s ( r + s 2 ) ) a j ) G ( s ) + ( ( r + s 2 ) r ) α 1 × ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( ( r + s 2 ) r ) a 1 , , ϖ j ( ( r + s 2 ) r ) a j ) G ( r ) ( R ( a i ) , α 1 , ( r + s 2 ) + ( c i ) , ( ϖ i ) G ( s ) + R ( a i ) , α 1 , ( r + s 2 ) ( c i ) , ( ϖ i ) G ( r ) ) K ( ( r + s 2 ) r ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( ( r + s 2 ) r ) a 1 , , ϖ j ( ( r + s 2 ) r ) a j ) + ( s ( r + s 2 ) ) α ε ( a i ) , α ( c i ) , ( ϖ i ) ( ϖ 1 ( s ( r + s 2 ) ) a 1 , , ϖ j ( s ( r + s 2 ) ) a j ) ( R ( a i ) , α , ( r + s 2 ) ( c i ) , ( ϖ i ) 1 ( r ) + R ( a i ) , α , ( r + s 2 ) + ( c i ) , ( ϖ i ) 1 ( s ) ) ) .
Proof. 
By applying Theorem 5 for α = β and θ = r + s 2 , we obtain the desired inequality of Theorem 7. □

4. Concluding Remarks

In the present article, we established the general form of Ostrowski-type fractional integral inequalities pertaining the multivariate M-L function in the kernel. Some new and existing inequalities are presented in this paper. If we consider j = 1 throughout in the paper, then we will have inequalities for the Prabhakar fractional operators containing the three-parameter M-L function. If we consider ϖ = 0 , then the outcomes of this article will reduce to the Ostrowski-type inequalities for the R-L fractional integral operator [25].

Author Contributions

Conceptualization, G.R., M.V.-C., Ç.Y., M.S., S.M. and M.F.Y.; methodology, G.R., M.V.-C., Ç.Y., M.S., S.M. and M.F.Y.; software, G.R., M.V.-C., Ç.Y., M.S., S.M. and M.F.Y.; formal analysis, G.R., M.V.-C., Ç.Y., M.S., S.M. and M.F.Y.; investigation, G.R., M.V.-C., Ç.Y., M.S., S.M. and M.F.Y.; resources, M.V.-C. and Ç.Y.; data curation, G.R., M.V.-C., Ç.Y., M.S., S.M. and M.F.Y.; writing—original draft preparation, G.R., M.V.-C., Ç.Y., M.S., S.M. and M.F.Y.; writing—review and editing, G.R., M.V.-C., Ç.Y., M.S., S.M. and M.F.Y.; visualization, G.R., M.V.-C., Ç.Y., M.S., S.M. and M.F.Y.; supervision, M.V.-C.; project administration, M.V.-C.; funding acquisition, M.V.-C. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Pontificia Universidad Católica del Ecuador, Proyecto Título: “Algunos resultados Cualitativos sobre Ecuaciones Diferenciales Fraccionales y Desigualdades Integrales” Cod UIO2022.

Data Availability Statement

Not applicable.

Acknowledgments

This study was supported via funding from Prince Sattam bin Abdulaziz University, project number (PSAU/2023/R/1444).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Ostrowski, A. Über die Absolutabweichung einer dierentierbaren Funktion von ihren Integralmittelwert. Comment. Math. Helv. 1938, 10, 226–227. [Google Scholar] [CrossRef]
  2. Dragomir, S.S.; Rassias, T.M. Ostrowski-Type Inequalities and Applications in Numerical Integration; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2002. [Google Scholar]
  3. Set, E. New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 2012, 63, 1147–1154. [Google Scholar] [CrossRef]
  4. Liu, W. Some Ostrowski type inequalities via Riemann-Liouville fractional integrals for h-convex functions. arXiv 2012, arXiv:1210.3942. [Google Scholar]
  5. Kermausuor, S. Ostrowski type inequalities for functions whose derivatives are strongly (α,m)-convex via k-Riemann-Liouville fractional integrals. Stud. Univ. Babes-Bolyai Math. 2019, 64, 25–34. [Google Scholar] [CrossRef]
  6. Lakhal, F. Ostrowski type inequalities for k-β-convex functions via Riemann—Liouville k-fractional integrals. Rend. Circ. Mat. Palermo Ser. 2021, 70, 1561–1571. [Google Scholar] [CrossRef]
  7. Al-Deeb, A.; Awrejcewicz, J. Ostrowski-Trapezoid-Grüss-type on (q,d)-Hahn difference operator. Symmetry 2022, 14, 1776. [Google Scholar] [CrossRef]
  8. Gürbüz, M.; Taşdan, Y.; Set, E. Ostrowski type inequalities via the Katugampola fractional integrals. AMIS Math. 2020, 5, 42–53. [Google Scholar] [CrossRef]
  9. Basci, Y.; Baleanu, D. Ostrowski type inequalities involving ψ-hilfer fractional integrals. Mathematics 2019, 7, 770. [Google Scholar] [CrossRef]
  10. Faisal, S.; Khan, M.A.; Khan, T.U.; Saeed, T.; Alshehri, A.M.; Nwaeze, E.R. New ”conticrete” Hermite–Hadamard-Jensen-Mercer fractional inequalities. Symmetry 2022, 14, 294. [Google Scholar] [CrossRef]
  11. Almutairi, O.; Kilicman, A. A review of Hermite-Hadamard inequality for α-type real-valued convex functions. Symmetry 2022, 14, 840. [Google Scholar] [CrossRef]
  12. Farid, G.; Mubeen, S.; Set, E. Fractional inequalities associated with a generalized Mittag-Leffler function and applications. Filomat 2020, 34, 2683–2692. [Google Scholar] [CrossRef]
  13. Samraiz, M.; Mehmood, A.; Naheed, S.; Rahman, G.; Kashuri, A.; Nonlaopon, K. On Novel Fractional Operators Involving the Multivariate Mittag–Leffler Function. Mathematics 2022, 10, 3991. [Google Scholar] [CrossRef]
  14. Nazir, A.; Rahman, G.; Ali, A.; Naheed, S.; Nisar, K.S.; Albalawi, W.; Zahran, H.Y. On generalized fractional integral with multivariate Mittag-Leffler function and its applications. Alex. Eng. J. 2022, 61, 9187–9201. [Google Scholar] [CrossRef]
  15. Shukla, A.K.; Prajapati, J.C. On a generalization of Mittag-Leffler functions and its properties. J. Math. Anal. Appl. 2007, 336, 797–811. [Google Scholar] [CrossRef]
  16. Salim, T.O.; Faraj, A.W. A generalization of Mittag-Leffler function and integral operator associated with integral calculus. J. Fract. Calc. Appl. 2012, 3, 1–13. [Google Scholar]
  17. Farid, G.; Khan, K.A.; Latif, N.; Rehman, A.U.; Mehmood, S. General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Lefller function. J. Inequal. Appl. 2018, 2018, 243. [Google Scholar] [CrossRef]
  18. Kang, S.M.; Farid, G.; Nazeer, W.; Tariq, B. Hadamard and Fejér-Hadamard inequalities for extended generalized fractional integrals involving special functions. J. Inequal. Appl. 2018, 2018, 119. [Google Scholar] [CrossRef]
  19. Shao, Y.; Elmasry, Y.; Rahman, G.; Samraiz, M.; Kashuri, A.; Nonlaopon, K. The Grüss-Type and Some Other Related Inequalities via Fractional Integral with Respect to Multivariate Mittag-Leffler Function. Fractal Fract. 2022, 6, 546. [Google Scholar] [CrossRef]
  20. Prabhakar, T.R. A singular Integral equation with a generalized Mittag Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
  21. Saxena, R.K.; Kalla, S.L.; Saxena, R. Multivariate analogue of generalized Mittag-Leffler function. Integral Trans. Spec. Func. 2011, 22, 533–548. [Google Scholar] [CrossRef]
  22. Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag-Leffler Functions, Related Topics and Applications; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
  23. Podlubny, I. Fractional Differential Equations; Academic Press: London, UK, 1999. [Google Scholar]
  24. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Basel, Switzerland, 1993. [Google Scholar]
  25. Farid, G. Some new Ostrowski type inequalities via fractional integrals. Int. J. Anal. Appl. 2017, 14, 64–68. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Rahman, G.; Vivas-Cortez, M.; Yildiz, Ç.; Samraiz, M.; Mubeen, S.; Yassen, M.F. On the Generalization of Ostrowski-Type Integral Inequalities via Fractional Integral Operators with Application to Error Bounds. Fractal Fract. 2023, 7, 683. https://doi.org/10.3390/fractalfract7090683

AMA Style

Rahman G, Vivas-Cortez M, Yildiz Ç, Samraiz M, Mubeen S, Yassen MF. On the Generalization of Ostrowski-Type Integral Inequalities via Fractional Integral Operators with Application to Error Bounds. Fractal and Fractional. 2023; 7(9):683. https://doi.org/10.3390/fractalfract7090683

Chicago/Turabian Style

Rahman, Gauhar, Miguel Vivas-Cortez, Çetin Yildiz, Muhammad Samraiz, Shahid Mubeen, and Mansour F. Yassen. 2023. "On the Generalization of Ostrowski-Type Integral Inequalities via Fractional Integral Operators with Application to Error Bounds" Fractal and Fractional 7, no. 9: 683. https://doi.org/10.3390/fractalfract7090683

APA Style

Rahman, G., Vivas-Cortez, M., Yildiz, Ç., Samraiz, M., Mubeen, S., & Yassen, M. F. (2023). On the Generalization of Ostrowski-Type Integral Inequalities via Fractional Integral Operators with Application to Error Bounds. Fractal and Fractional, 7(9), 683. https://doi.org/10.3390/fractalfract7090683

Article Metrics

Back to TopTop