Hermite–Hadamard-Type Inequalities via Caputo–Fabrizio Fractional Integral for h-Godunova–Levin and (h1, h2)-Convex Functions
Abstract
:1. Introduction
2. Preliminaries
3. Hermite–Hadamard Inequality via H-Godunova–Levin Functions Involving Caputo–Fabrizio Fractional Operator
4. Hermite–Hadamard Inequality via -Convex Functions Involving Caputo–Fabrizio Fractional Operator
5. Results Concerning Caputo–Fabrizio Fractional Operator
Application to Means
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tarasov, V. On History of Mathematical Economics: Application of Fractional Calculus. Mathematics 2019, 7, 509. [Google Scholar] [CrossRef]
- Mainardi, F. Why the Mittag-Leffler Function Can Be Considered the Queen Function of the Fractional Calculus? Entropy 2020, 22, 1359. [Google Scholar] [CrossRef] [PubMed]
- Mainardi, F. Fractional Calculus: Theory and Applications. Mathematics 2018, 6, 145. [Google Scholar] [CrossRef]
- Dianavinnarasi, J.; Raja, R.; Alzabut, J.; Niezabitowski, M.; Selvam, G.; Bagdasar, O. An LMI Approach-Based Mathematical Model to Control Aedes Aegypti Mosquitoes Population via Biological Control. Math. Probl. Eng. 2021, 2021, 5565949. [Google Scholar] [CrossRef]
- Robinson, S.M. An application of error bounds for convex programming in a linear space. SIAM J. Control 1975, 13, 271–273. [Google Scholar] [CrossRef]
- Pearce, C.E.; Pecaric, J. Inequalities for differentiable mappings with application to special means and quadrature formulae. Appl. Math. Lett. 2000, 13, 51–55. [Google Scholar] [CrossRef]
- Kılıçman, A.; Saleh, W. Generalized preinvex functions and their applications. Symmetry 2018, 10, 493. [Google Scholar] [CrossRef]
- Caputo, M. Linear Models of Dissipation Whose Q Is Almost Frequency Independent–II. Geophys. J. Int. 1967, 13, 529–539. [Google Scholar] [CrossRef]
- Butt, S.I.; Nadeem, M.; Farid, G. On Caputo fractional derivatives via exponential s-convex functions. Turk. J. Sci. 2020, 5, 140–146. [Google Scholar]
- Kemali, S.; Sezer Evcan, S.; Yesilce Isik, I.; Adilov, G. Some Integral Inequalities for the Product of S-Convex Functions in the Fourth Sense. IJNAA 2022, 13, 103–116. [Google Scholar]
- Abbasi, A.M.K.; Anwar, M. Hermite–Hadamard inequality involving Caputo–Fabrizio fractional integrals and related inequalities via s-convex functions in the second sense. AIMS Math. 2022, 7, 18565–18575. [Google Scholar] [CrossRef]
- Gurbuz, M.; Akdemir, A.O.; Rashid, S.; Set, E. Hermite–Hadamard Inequality for Fractional Integrals of Caputo–Fabrizio Type and Related Inequalities. J. Inequal. Appl. 2020, 172. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Hamed, Y.S.; Mohammed, P.O.; Kodamasingh, B.; Nonlaopon, K. New Midpoint Type Hermite–Hadamard-Mercer Inequalities Pertaining to Caputo–Fabrizio Fractional Operators. Alex. Eng. J. 2023, 65, 689–698. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Tariq, M.; Hamed, Y.S. New Fractional Integral Inequalities for Convex Functions Pertaining to Caputo–Fabrizio Operator. Fractal Fract. 2022, 6, 171. [Google Scholar] [CrossRef]
- Nwaeze, E.R.; Kermausuor, S. Caputo–Fabrizio Fractional Hermite–Hadamard Type and Associated Results for Strongly Convex Functions. J. Anal. 2021, 29, 1351–1365. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Saleem, M.S.; Sajid, S.; Zahoor, M.S.; Kashuri, A. Hermite–Jensen–Mercer-Type Inequalities via Caputo–Fabrizio Fractional Integral for h-Convex Function. Fractal Fract. 2021, 5, 269. [Google Scholar] [CrossRef]
- Tariq, M.; Ahmad, H.; Shaikh, A.G.; Sahoo, S.K.; Khedher, K.M.; Gia, T.N. New fractional integral inequalities for preinvex functions involving caputo fabrizio operator. AIMS Math. 2022, 7, 3440–3455. [Google Scholar] [CrossRef]
- Nosheen, A.; Tariq, M.; Khan, K.A.; Shah, N.A.; Chung, J.D. On Caputo Fractional Derivatives and Caputo–Fabrizio Integral Operators via (s,m)-Convex Functions. Fractal Fract. 2023, 7, 187. [Google Scholar] [CrossRef]
- Zhang, D.; Saleem, M.S.; Botmart, T.; Zahoor, M.S.; Bano, R. Hermite–Hadamard-Type Inequalities for Generalized Convex Functions via the Caputo–Fabrizio Fractional Integral Operator. J. Funct. Spaces 2021, 2021, 5640822. [Google Scholar] [CrossRef]
- Nasira, J.; Qaisarb, S.; Qayyumc, A.; Budakd, H. New results on Hermite–Hadamard type inequalities via Caputo–Fabrizio fractional integral for s-convex function. Filomat 2023, 2023, 4943–4957. [Google Scholar]
- Tariq, M.; Ntouyas, S.K.; Shaikh, A.A. A Comprehensive Review of the Hermite–Hadamard Inequality Pertaining to Fractional Integral Operators. Mathematics 2023, 11, 1953. [Google Scholar] [CrossRef]
- Afzal, W.; Prosviryakov, E.Y.; El-Deeb, S.M.; Almalki, Y. Some New Estimates of Hermite–Hadamard, Ostrowski and Jensen-Type Inclusions for h-Convex Stochastic Process via Interval-Valued Functions. Symmetry 2023, 15, 831. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Awan, M.U.; Javed, M.Z.; Noor, M.A.; Noor, K.I. A Study of Uniform Harmonic χ -Convex Functions with Respect to Hermite–Hadamard’s Inequality and Its Caputo–Fabrizio Fractional Analogue and Applications. J. Funct. Spaces 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Afzal, W.; Shabbir, K.; Botmart, T.; Treanţă, S.; Afzal, W.; Shabbir, K.; Botmart, T.; Treanţă, S. Some New Estimates of Well Known Inequalities for (h1, h2)-Godunova–Levin Functions by Means of Center-Radius Order Relation. AIMS Math 2023, 8, 3101–3119. [Google Scholar] [CrossRef]
- Samraiz, M.; Perveen, Z.; Rahman, G.; Adil Khan, M.; Nisar, K.S. Hermite–Hadamard Fractional Inequalities for Differentiable Functions. Fractal Fract. 2022, 6, 60. [Google Scholar] [CrossRef]
- Chinchane, V.L.; Nale, A.B.; Panchal, S.K.; Chesneau, C. Certain Weighted Fractional Inequalities via the Caputo–Fabrizio Approach. Fractal Fract. 2022, 6, 495. [Google Scholar] [CrossRef]
- Afzal, W.; Eldin, S.M.; Nazeer, W.; Galal, A.M.; Afzal, W.; Eldin, S.M.; Nazeer, W.; Galal, A.M. Some integral inequalities for harmonical cr-h-Godunova–Levin stochastic processes. AIMS Math 2023, 8, 13473–13491. [Google Scholar] [CrossRef]
- Afzal, W.; Shabbir, K.; Arshad, M.; Asamoah, J.K.K.; Galal, A.M. Some Novel Estimates of Integral Inequalities for a Generalized Class of Harmonical Convex Mappings by Means of Center-Radius Order Relation. J. Math. 2023, 2023, 8865992. [Google Scholar] [CrossRef]
- Afzal, W.; Alb Lupaş, A.; Shabbir, K. Hermite–Hadamard and Jensen-Type Inequalities for Harmonical (h1, h2)-Godunova–Levin Interval-Valued Functions. Mathematics 2022, 10, 2970. [Google Scholar] [CrossRef]
- Saeed, T.; Afzal, W.; Abbas, M.; Treanţă, S.; De la Sen, M. Some New Generalizations of Integral Inequalities for Harmonical cr-(h1, h2)-Godunova–Levin Functions and Applications. Mathematics 2022, 10, 4540. [Google Scholar] [CrossRef]
- Afzal, W.; Nazeer, W.; Botmart, T.; Treanţă, S. Some properties and inequalities for generalized class of harmonical Godunova–Levin function via center radius order relation. AIMS Math. 2022, 8, 1696–1712. [Google Scholar] [CrossRef]
- Tınaztepe, G.; Işık, I.Y.; Kemali, S.; Adilov, G. Certain inequalities for s-convex functions via Caputo fractional derivative and Caputo–Fabrizio integral operator. J. Math. Ext. 2021, 15. [Google Scholar]
- Tariq, M.; Alsalami, O.M.; Shaikh, A.A.; Nonlaopon, K.; Ntouyas, S.K. New Fractional Integral Inequalities Pertaining to Caputo–Fabrizio and Generalized Riemann–Liouville Fractional Integral Operators. Axioms 2022, 11, 618. [Google Scholar] [CrossRef]
- Afzal, W.; Botmart, T.; Afzal, W.; Botmart, T. Some Novel Estimates of Jensen and Hermite-Hadamard Inequalities for h-Godunova–Levin Stochastic Processes. AIMS Math 2023, 8, 7277–7291. [Google Scholar] [CrossRef]
- Atangana, A.; Alqahtani, R.T. Numerical Approximation of the Space-Time Caputo–Fabrizio Fractional Derivative and Application to Groundwater Pollution Equation. Adv. Differ. Equ. 2016, 2016, 156. [Google Scholar] [CrossRef]
- Wang, X.; Saleem, M.S.; Aslam, K.N.; Wu, X.; Zhou, T. On Caputo–Fabrizio Fractional Integral Inequalities of Hermite–Hadamard Type for Modified h-Convex Functions. J. Math. 2020, 2020, 8829140. [Google Scholar] [CrossRef]
- Abbas, M.; Afzal, W.; Botmart, T.; Galal, A.M.; Abbas, M.; Afzal, W.; Botmart, T.; Galal, A.M. Jensen, Ostrowski and Hermite–Hadamard Type Inequalities for h-Convex Stochastic Processes by Means of Center-Radius Order Relation. AIMS Math 2023, 8, 16013–16030. [Google Scholar] [CrossRef]
- Afzal, W.; Abbas, M.; Macías-Díaz, J.E.; Treanţă, S. Some H-Godunova–Levin Function Inequalities Using Center Radius (Cr) Order Relation. Fractal Fract. 2022, 6, 518. [Google Scholar] [CrossRef]
- Saeed, T.; Afzal, W.; Shabbir, K.; Treanţă, S.; De La Sen, M. Some Novel Estimates of Hermite–Hadamard and Jensen Type Inequalities for (h1, h2)-Convex Functions Pertaining to Total Order Relation. Mathematics 2022, 10, 4777. [Google Scholar] [CrossRef]
- Zhang, X.; Shabbir, K.; Afzal, W.; Xiao, H.; Lin, D. Hermite–Hadamard and Jensen-Type Inequalities via Riemann Integral Operator for a Generalized Class of Godunova–Levin Functions. J. Math. 2022, 2022, e3830324. [Google Scholar] [CrossRef]
- Dragomir, S.S. Double Integral Inequalities of Hermite–Hadamard Type for h-Convex Functions on Linear Spaces. Analysis 2017, 37, 13–22. [Google Scholar] [CrossRef]
- Afzal, W.; Shabbir, K.; Botmart, T. Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued (h1, h2)-Godunova–Levin functions. AIMS Math. 2022, 7, 19372–19387. [Google Scholar] [CrossRef]
- Özdemir, M.E. Some Inequalities for the s-Godunova–Levin type functions. Math. Sci. 2015, 9, 27–32. [Google Scholar] [CrossRef]
- Afzal, W.; Abbas, M.; Eldin, S.M.; Khan, Z.A.; Afzal, W.; Abbas, M.; Eldin, S.M.; Khan, Z.A. Some Well Known Inequalities for (h1, h2)-Convex Stochastic Process via Interval Set Inclusion Relation. AIMS Math 2023, 8, 19913–19932. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1198, 11, 91–95. [Google Scholar] [CrossRef]
- Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Springer: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Dragomir, S.S.; Fitzpatrick, S. The Hadamard inequalities for s-convex functions in the second sense. Demonstr. Math. 1999, 32, 687–696. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pecaric, J.; Persson, L.E. Some inequalities of Hadamard type. Soochow J. Math. 1995, 21, 335–341. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afzal, W.; Abbas, M.; Hamali, W.; Mahnashi, A.M.; Sen, M.D.l. Hermite–Hadamard-Type Inequalities via Caputo–Fabrizio Fractional Integral for h-Godunova–Levin and (h1, h2)-Convex Functions. Fractal Fract. 2023, 7, 687. https://doi.org/10.3390/fractalfract7090687
Afzal W, Abbas M, Hamali W, Mahnashi AM, Sen MDl. Hermite–Hadamard-Type Inequalities via Caputo–Fabrizio Fractional Integral for h-Godunova–Levin and (h1, h2)-Convex Functions. Fractal and Fractional. 2023; 7(9):687. https://doi.org/10.3390/fractalfract7090687
Chicago/Turabian StyleAfzal, Waqar, Mujahid Abbas, Waleed Hamali, Ali M. Mahnashi, and M. De la Sen. 2023. "Hermite–Hadamard-Type Inequalities via Caputo–Fabrizio Fractional Integral for h-Godunova–Levin and (h1, h2)-Convex Functions" Fractal and Fractional 7, no. 9: 687. https://doi.org/10.3390/fractalfract7090687
APA StyleAfzal, W., Abbas, M., Hamali, W., Mahnashi, A. M., & Sen, M. D. l. (2023). Hermite–Hadamard-Type Inequalities via Caputo–Fabrizio Fractional Integral for h-Godunova–Levin and (h1, h2)-Convex Functions. Fractal and Fractional, 7(9), 687. https://doi.org/10.3390/fractalfract7090687