Pore Space Characteristics and Migration Changes in Hydrocarbons in Shale Reservoir
Abstract
:1. Introduction
2. Samples and Methods
2.1. Geological Background and Samples
2.2. Experiments
2.2.1. XRD and TOC
2.2.2. Low-Temperature N2 and CO2 Adsorption
2.3. Methods
3. Results
3.1. TOC and Mineral Composition
3.2. CO2 and N2 Adsorption before and after Soxhlet Extraction
3.3. Pore Volumes and Specific Surface Areas
3.4. Fractal Dimensions before and after Soxhlet Extraction
4. Discussions
4.1. Discussion on Pore Space Occupied by Hydrocarbons
4.2. Complexity Change in Pores before and after Extraction
4.3. The Change in Hydrocarbon Accumulation before and after Extraction
4.3.1. Migration and Re-Adsorption of Light Hydrocarbons
4.3.2. Effect of Pore Throat Structure on Extraction Process
4.3.3. Effect of Mineral Surface Wettability on the Extraction Process
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jia, C.; Zou, C.; Li, J.; Li, D.; Zheng, M. Assessment criteria, main types, basic features and resource prospects of the tight oil in China. Acta Pet. Sin. 2012, 33, 343–350. [Google Scholar]
- Hao, F.; Zou, H.; Lu, Y. Mechanisms of shale gas storage: Implications for shale gas exploration in China. AAPG Bull. 2013, 97, 1325–1346. [Google Scholar] [CrossRef]
- Zou, C.; Zhu, R.; Chen, Z.; Ogg, J.; Wu, S.; Dong, D.; Qiu, Z.; Wang, Y.; Wang, L.; Lin, S.; et al. Organic-matter-rich shales of China. Earth-Sci. Rev. 2019, 189, 51–78. [Google Scholar] [CrossRef]
- Katsube, T.; Williamson, M. Effects of diagenesis on shale nanopore structure and implications for sealing capacity. Clay Miner. 1994, 29, 451–461. [Google Scholar] [CrossRef]
- Loucks, R.; Reed, R.; Ruppel, S.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrixrelated mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Merkel, A.; Fink, R.; Littke, R. High pressure methane sorption characteristics of lacustrine shale from the Middle Valley Basin, Scotland. Fuel 2016, 182, 361–372. [Google Scholar] [CrossRef]
- Jin, Z.; Wang, G.; Liu, G.; Gao, B.; Liu, Q.; Wang, H.; Liang, X.; Wang, R. Research progress and key scientific issues of continental shale oil in China. Acta Pet. Sin. 2021, 42, 821–835. (In Chinese) [Google Scholar] [CrossRef]
- Dong, D.; Gao, S.; Huang, J.; Guan, Q.; Wang, S.; Wang, Y. Discussion on the exploration & development prospect of shale gas in the Sichuan Basin. Nat. Gas Ind. B 2015, 2, 9–23. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, X.; Gao, Z.; Liu, S.; Zhou, W.; Hu, W. Pore structure and tracer migration behavior of typical American and Chinese shales. Pet. Sci. 2015, 12, 651–663. [Google Scholar] [CrossRef]
- Zhang, J.; Li, X.; Wei, Q.; Gao, W.; Liang, W.; Wang, Z.; Wang, F. Quantitative characterization of pore-fracture system of organic-rich marine-continental shale reservoirs: A case study of the Upper Permian Longtan formation, Southern Sichuan Basin, China. Fuel 2017, 200, 272–281. [Google Scholar] [CrossRef]
- Mastalerz, M.; Schimmelmann, A.; Drobniak, A.; Chen, Y. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bull. 2013, 97, 1621–1643. [Google Scholar] [CrossRef]
- Ji, W.; Hao, F.; Schulz, H.; Song, Y.; Tian, J. The architecture of organic matter and its pores in highly mature gas shales of the Lower Silurian Longmaxi Formation in the Upper Yangtze Platform, south China. AAPG Bull. 2019, 102, 2909–2942. [Google Scholar] [CrossRef]
- Huang, H.; Li, R.; Xiong, F.; Hu, H.; Sun, W.; Jiang, Z.; Chen, L.; Wu, L. A method to probe the pore-throat structure of tight reservoirs based on low-field NMR: Insights from a cylindrical pore model. Mar. Pet. Geol. 2020, 117, 104344. [Google Scholar] [CrossRef]
- Zhang, K.; Song, Y.; Jia, C.; Jiang, Z.; Han, F.; Wang, P.; Yuan, X.; Yang, Y.; Zeng, Y.; Li, Z.; et al. Formation mechanism of the sealing capacity of the roof and floor strata of marine organic-rich shale and shale itself, and its influence on the characteristics of shale gas and organic matter pore development. Mar. Pet. Geol. 2022, 140, 105647. [Google Scholar] [CrossRef]
- Bernard, S.; Horsfield, B. Reply to comment on ‘‘Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin)”. Int. J. Coal Geol. 2014, 127, 114–115. [Google Scholar] [CrossRef]
- Lu, S.; Liu, W.; Wang, M.; Zhang, L.; Wang, Z.; Chen, G.; Xiao, D.; Li, Z.; Hu, H. Lacustrine shale oil resource potential of Es3 L sub-member of Bonan Sag, Bohai Bay Basin, Eastern China. J. Earth Sci. 2017, 28, 996–1005. [Google Scholar] [CrossRef]
- Tian, H.; Pan, L.; Zhang, T.; Xiao, X.; Meng, Z.; Huang, B. Pore characterization of organic-rich lower Cambrian shales in Qiannan depression of Guizhou province, southwestern China. Mar. Pet. Geol. 2015, 62, 28–43. [Google Scholar] [CrossRef]
- Lu, H.; Li, Q.; Yue, D.; Wu, Y.; Gao, J.; Wu, S.; Wang, W.; Li, M.; An, K. Quantitative characterization and formation mechanism of the pore system heterogeneity: Examples from organic-rich laminated and organic-poor layered shales of the upper triassic chang 7 member in the southern Ordos Basin, China. Mar. Pet. Geol. 2023, 147, 105999. [Google Scholar] [CrossRef]
- Tang, X.; Jiang, Z.; Jiang, S.; Li, Z.; Peng, Y.; Xiao, D. Effects of organic matter and mineral compositions on pore structures of shales: A comparative study of lacustrine shale in Ordos Basin and Marine Shale in Sichuan Basin, China. Energy Explor. Exploit. 2018, 36, 28–42. [Google Scholar] [CrossRef]
- Zhao, J.; Jin, Z.; Jin, Z.; Hu, Q.; Hu, Z.; Du, W.; Yan, C.; Geng, Y. Mineral types and organic matters of the Ordovician-Silurian Wufeng and Longmaxi shale in the Sichuan Basin, China: Implications for pore systems, diagenetic pathways, and reservoir quality in fine-grained sedimentary rocks. Mar. Pet. Geol. 2017, 86, 55–674. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.; Olivier, J.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Wang, M.; Guan, Y.; Li, C.; Liu, Y.; Lu, S. Qualitative description and full-pore-size quantitative evaluation of pores in lacustrine shale reservoir of Shahejie Formation, Jiyang Depression. Oil Gas Geol. 2018, 39, 1107–1119. [Google Scholar] [CrossRef]
- Vivek, K.; Vinod, A.; Alka, D.; Shashanka, P.; Vikram, P.; Priyanka, S. Significance of organo-mineralogical constituents on pore distribution, fractals and gas sorption mechanism of Permian shale beds in Korba sub-basin of the Son-Mahanadi Valley, India. Geoenergy Sci. Eng. 2023, 231, 212334. [Google Scholar] [CrossRef]
- Chalmers, G.; Bustin, R.; Power, I. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bull. 2012, 96, 1099–1119. [Google Scholar] [CrossRef]
- Curtis, M.; Cardott, B.; Sondergeld, C.; Rai, C. Development of organic porosity in the Woodford Shale with increasing thermal maturity. Int. J. Coal Geol. 2012, 103, 26–31. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, D.; Cai, Y.; Karpyn, Z.; Yao, Y. Comparative analysis of nanopore structure and its effect on methane adsorption capacity of Southern Junggar coalfield coals by gas adsorption and FIB-SEM tomography. Microporous Mesoporous Mater. 2018, 272, 117–128. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, Y.; Liu, D.; Zheng, S.; Sun, G.; Chang, Y. Shale pore size classification: An NMR fluid typing method. Mar. Pet. Geol. 2018, 96, 591–601. [Google Scholar] [CrossRef]
- Tian, X.; Duan, X.; Sun, M.; Erfan, M.; Hu, Q.; Mehdi, O.; Liu, B.; Ke, Y.; Pan, Z. Evolution of fractal characteristics in shales with increasing thermal maturity: Evidence from neutron scattering, N2 physisorption, and FE-SEM imaging. Energy 2024, 298, 131342. [Google Scholar] [CrossRef]
- Wang, F.; Wang, L. Pore structure analysis and permeability prediction of shale oil reservoirs with HPMI and NMR: A case study of the Permian Lucaogou Formation in the Jimsar Sag, Junggar Basin, NW China. J. Pet. Sci. Eng. 2022, 214, 110503. [Google Scholar] [CrossRef]
- Liu, K.; Ostadhassan, M.; Zou, J.; Gentzis, T.; Rezaee, R.; Bubach, B.; Carvajal-Ortiz, H. Multifractal analysis of gas adsorption isotherms for pore structure characterization of the Bakken Shale. Fuel 2018, 219, 296–311. [Google Scholar] [CrossRef]
- Turlapati, V.; Prusty, B.; Yarlagadda, D.; Pal, S.; Raja, E. Analysis of micropore size distribution using Dubinin’s theory of volume filling—Effect of particle size on pore characterization of organic-rich Indian shales. J. Nat. Gas Sci. Eng. 2022, 106, 104746. [Google Scholar] [CrossRef]
- Mandelbrot, B.; Passoja, D.; Paullay, A. Fractal character of fracture surfaces of metals. Nature 1984, 308, 721–722. [Google Scholar] [CrossRef]
- Lai, J.; Wang, G. Fractal analysis of tight gas sandstones using high-pressure mercury intrusion techniques. J. Nat. Gas Sci. Eng. 2015, 24, 185–196. [Google Scholar] [CrossRef]
- Huang, H.; Chen, L.; Sun, W.; Xiong, F.; Ji, W.; Jia, J.; Tang, X.; Zhang, S.; Gao, J.; Luo, B. Pore-throat structure and fractal characteristics of Shihezi formation tight gas sandstones in the Ordos Basin, China. Fractals 2018, 26, 1840005. [Google Scholar] [CrossRef]
- Li, X.; Wei, W.; Wang, L.; Ding, P.; Zhu, L.; Cai, J. A new method for evaluating the pore structure complexity of digital rocks based on the relative value of fractal dimension. Mar. Pet. Geol. 2022, 141, 105694. [Google Scholar] [CrossRef]
- Guan, Q.; Dong, D.; Sun, S.; Hu, L.; Qi, L.; Li, C.; Chen, C.; Chen, X. Fractal characteristics of organic-rich shale pore structure and its geological implications: A case study of the Lower Silurian Longmaxi Formation in the Weiyuan block, Sichuan Basin. Nat. Gas. Ind. 2024, 44, 108–118. [Google Scholar]
- Jarvie, D. Shale Resource Systems for Oil and Gas Part 2: Shale-oil Resource Systems. In Shale Reservoirs_Giant Resources for the 21st Century: AAPG Memoir; American Association of Petroleum Geologists; GeoScienceWorld: McLean, VA, USA, 2012; Volume 97. [Google Scholar] [CrossRef]
- Wang, M.; Ma, R.; Li, J.; Lu, S.; Li, C.; Guo, Z.; Li, Z. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formationof Jiyang Depression, Bohai Bay Basin, China. Pet. Explor. Dev. 2019, 46, 789–802. [Google Scholar] [CrossRef]
- Han, Y.; Horsfield, B.; Wirth, R.; Mahlstedt, N.; Bernard, S. Oil retention and porosity evolution in organic rich shales. AAPG Bull. 2017, 101, 807–827. [Google Scholar] [CrossRef]
- Hu, T.; Pang, X.; Jiang, F.; Wang, Q.; Liu, X.; Wang, Z.; Jiang, S.; Wu, G.; Li, C.; Xu, T.; et al. Movable oil content evaluation of lacustrine organic-rich shales: Methods and a novel quantitative evaluation model. Earth-Sci. Rev. 2021, 214, 103545. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, H.; Li, Z.; Liu, M. Oil physical status in lacustrine shale reservoirs—A case study on Eocene Shahejie Formation shales, Dongying Depression, East China. Fuel 2019, 257, 116027. [Google Scholar] [CrossRef]
- Pernyeszi, t.; Patzkó, Á.; Berkesi, O.; Dékány, I. Asphaltene adsorption on clays and crude oil reservoir rocks. Colloids Surf. A 1998, 137, 373–384. [Google Scholar] [CrossRef]
- Liu, B.; Liu, Y.; Liu, Y.; He, J.; Gao, Y.; Wang, H.; Fan, J.; Fu, X. Prediction of low-maturity shale oil produced by in situ conversion: A case study of the first and second members of Nenjiang Formation in the Central Depression, southern Songliao Basin, Northeast China. Pet. Geol. Exp. 2020, 42, 533–544. [Google Scholar] [CrossRef]
- Guo, J.; Li, M.; Chen, C.; Tao, L.; Liu, Z. Experimental investigation of spontaneous imbibition in tight sandstone reservoirs. J. Pet. Sci. Eng. 2020, 193, 107395. [Google Scholar] [CrossRef]
- Gao, H.; Wang, Y.; Xie, Y.; Ni, J.; Li, T.; Wang, C.; Xue, J. Imbibition and oil recovery mechanism of fracturing fluids in tight sandstone reservoirs. ACS Omega 2021, 6, 1991–2000. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Fu, J.; He, H.; Liu, X.; Zhang, Z.; Deng, X. Formation and distribution of large low-permeability lithologic oil regions in Huaqing, Ordos Basin. Pet. Explor. Dev. 2012, 39, 683–691. [Google Scholar] [CrossRef]
- Li, P.; Jia, C.; Jin, Z.; Liu, Q.; Zheng, M.; Huang, Z. The characteristics of movable fluid in the Triassic lacustrine tight oil reservoir: A case study of the Chang 7 member of Xin’anbian Block, Ordos Basin, China. Mar. Pet. Geol. 2019, 102, 126–137. [Google Scholar] [CrossRef]
- He, C.; Ji, L.; Su, A.; Wu, Y.; Zhang, M.; Zhou, S.; Li, J.; Hao, L.; Ma, Y. Source-rock evaluation and depositional environment of black shales in the Triassic Yanchang Formation, southern Ordos Basin, north-central China. J. Pet. Sci. Eng. 2019, 173, 899–911. [Google Scholar] [CrossRef]
- Fu, J.; Li, S.; Niu, X.; Deng, X.; Zhou, X. Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China. Pet. Explor. Dev. 2020, 45, 931–945. [Google Scholar] [CrossRef]
- Lin, W.; Maria, M.; Arndt, S.; Chen, Y. Influence of Soxhlet extractable bitumen and oil on porosity in thermally maturing organic-rich shales. Int. J. Coal Geol. 2014, 132, 38–50. [Google Scholar] [CrossRef]
- Yang, F.; Ning, Z.; Liu, H. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel 2014, 115, 378–384. [Google Scholar] [CrossRef]
- Anitas, E.; Slyamov, A.; Todoran, R.; Szakacs, Z. Small-angle scattering from nanoscale fat fractals. Nanoscale Res. Lett. 2017, 12, 389. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Song, Y.; Jiang, Z.; Jiang, S.; Li, Q. Pore structure and fractal characteristics of distinct thermally mature shales. Energy Fuels 2019, 33, 5116–5128. [Google Scholar] [CrossRef]
- Mishra, S.; Mendhe, V.; Varma, A.; Kamble, A.; Sharma, S.; Bannerjee, M.; Kalpana, M. Influence of organic and inorganic content on fractal dimensions of Barakar and Barren Measures shale gas reservoirs of Raniganj Basin, India. J. Nat. Gas Sci. Eng. 2018, 49, 393–409. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Cheng, H. Gas Adsorption Characterization of Pore Structure of Organic-rich Shale: Insights into Contribution of Organic Matter to Shale Pore Network. Nat. Resour. Res. 2021, 30, 2377–2395. [Google Scholar] [CrossRef]
- Gregg, S.; Sing, K. Adsorption, Surface Area and Porosity. 2. Auflage, academic press, London. Berichte Der. Bunsenges. Für. Phys. Chem. 1982, 86, 877–962. [Google Scholar] [CrossRef]
- Sing, K. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Groen, J.; Peffer, L.; Pérez-Ramírez, J. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 2003, 60, 1–17. [Google Scholar] [CrossRef]
- Tang, X.; Jiang, Z.; Li, Z.; Gao, Z.; Bai, Y.; Zhao, S.; Feng, J. The effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi formation in the southeastern Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2015, 23, 464–473. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Liu, S.; Zhang, R. Pore characterization and its impact on methane adsorption capacity for organic-rich marine shales. Fuel 2016, 181, 227–237. [Google Scholar] [CrossRef]
- Sakhaee-Pour, A.; Bryant, S. Effect of pore structure on the producibility of tight-gas sandstones. AAPG Bull. 2014, 98, 663–694. [Google Scholar] [CrossRef]
- Dutton, S.; Loucks, R. Diagenetic controls on evolution of porosity and permeability in lower Tertiary Wilcox sandstones from shallow to ultradeep (200–6700 m) burial, Gulf of Mexico Basin. U. S. A. Mar. Pet. Geol. 2010, 27, 69–81. [Google Scholar] [CrossRef]
- Chang, J.; Fan, X.; Jiang, Z.; Wang, X.; Chen, L.; Li, J.; Zhu, L.; Wan, C.; Chen, Z. Differential impact of clay minerals and organic matter on pore structure and its fractal characteristics of marine and continental shales in China. Appl. Clay Sci. 2022, 216, 106334. [Google Scholar] [CrossRef]
- Wang, S.; Feng, Q.; Javadpour, F.; Xia, T.; Li, Z. Oil adsorption in shale nanopores and its effect on recoverable oil-in-place. Int. J. Coal Geol. 2015, 147, 9–24. [Google Scholar] [CrossRef]
- Burhan, M.; Shahzad, M.; Ng, K. A universal theoretical framework in material characterization for tailored porous surface design. Sci Rep. 2019, 9, 8773. [Google Scholar] [CrossRef]
- Pan, Y.; Liao, Y.; Shi, Q.; Hsu, C. Acidic and neutral polar NSO compounds in heavily biodegraded oils characterized by negative-ion ESI FT-ICR MS. Energry Fuel 2013, 27, 2960–2973. [Google Scholar] [CrossRef]
- Qu, Y.; Sun, W.; Tao, R.; Luo, B.; Chen, L.; Ren, D. Pore-throat structure and fractal characteristics of tight sandstones in Yanchang Formation, Ordos Basin. Mar. Pet. Geol. 2020, 120, 104573. [Google Scholar] [CrossRef]
- Robin, M.; Rosenberg, E.; Fassi-Fihri, O. Wettability studies at the pore level: A new approach by use of Cryo-SEM. SPE Form. Eval. 1995, 10, 11–19. [Google Scholar] [CrossRef]
- Barclay, S.; Worden, R. Effects of reservoir wettability on quartz cementation in oil fields. Quartz Cem. Sandstones 2000, 29, 103–117. [Google Scholar] [CrossRef]
- Chang, X.; Xue, Q.; Li, X.; Zhang, J.; Zhu, L.; He, D.; Zheng, H.; Lu, S.; Liu, Z. Inherent wettability of different rock surfaces at nanoscale: A theoretical study. Appl. Surf. Sci. 2018, 434, 73–81. [Google Scholar] [CrossRef]
- Tian, S.; Erastova, V.; Lu, S.; Greenwell, H.; Underwood, T.; Xue, H.; Zeng, F.; Chen, G.; Wu, C.; Zhao, R. Understanding model crude oil component interactions on kaolinite silicate and aluminol surfaces: Toward improved understanding of shale oil recovery. Energy Fuels 2018, 32, 1155–1165. [Google Scholar] [CrossRef]
Sample ID | Depth (m) | TOC (wt%) | Detrital Component Content from XRD (%) | Relative Content of Clay Minerals (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Quartz | Feldspar | Carbonate | Clay | Siderite | Pyrite | Chlorite | Illite | I/S Mixed Layer | |||
C1 | 2201.2 | 0.34 | 30.5 | 21.5 | 3.6 | 40.9 | / | 3.6 | 5.4 | 58.9 | 35.6 |
C2 | 2205.7 | 1.09 | 27.4 | 27.7 | 6.1 | 37.3 | / | 1.5 | 2.5 | 65.3 | 32.2 |
C3 | 2132.4 | 2.41 | 17.2 | 34.2 | 4.2 | 42.1 | / | 2.3 | 23.4 | 50.8 | 25.8 |
C4 | 2125.2 | 1.44 | 16.2 | 23.5 | 3.8 | 54.5 | 0.2 | 1.9 | 9.7 | 61.5 | 28.8 |
C5 | 2064.3 | 4.51 | 30.6 | 23.9 | 2.9 | 41.0 | / | 1.6 | 21.5 | 58.7 | 19.8 |
C6 | 2123.0 | 13.26 | 15.5 | 24.6 | 1.4 | 52.2 | 2.2 | 4.1 | 5.6 | 67.3 | 27.1 |
Sample ID | Initial Sample | After Soxhlet Extraction | ||||
---|---|---|---|---|---|---|
CO2 Quantity Adsorbed (cm3/g STP) | Micro-Pore Volume (cm3/100 g) | Micro-Pore Surface Area (m2/g) | CO2 Quantity Adsorbed (cm3/g) | Micro-Pore Volume (cm3/100 g) | Micro-Pore Surface (m2/g) | |
C1 | 0.5767 | 0.0257 | 0.8791 | 0.6804 | 0.0601 | 2.1142 |
C2 | 0.7259 | 0.0512 | 1.7128 | 0.8460 | 0.0624 | 2.1171 |
C3 | 0.5068 | 0.0422 | 1.4828 | 0.4508 | 0.0327 | 1.1978 |
C4 | 0.3169 | 0.0249 | 0.8550 | 0.5157 | 0.0295 | 1.0123 |
C5 | 0.8308 | 0.0577 | 1.7889 | 1.4770 | 0.1448 | 4.8371 |
C6 | 1.2886 | 0.1162 | 3.7492 | 1.7221 | 0.1764 | 5.7932 |
Sample ID | Initial Sample | ||||||
---|---|---|---|---|---|---|---|
N2 Quantity Adsorbed (cm3/g) | BET Surface Area (m2/g) | DFT Pore Volume (cm3/100 g) | Meso-Pore Volume (cm3/100 g) | Macro-Pore Volume (cm3/100 g) | Meso-Pore Surface Area (m2/g) | Macro-Pore Surface Area (m2/g) | |
C1 | 8.6798 | 8.2261 | 0.8904 | 0.6840 | 0.0748 | 1.9398 | 0.0202 |
C2 | 6.5852 | 4.3957 | 0.7366 | 0.5638 | 0.1268 | 0.3466 | 0.0278 |
C3 | 7.4363 | 3.4300 | 1.0803 | 0.7307 | 0.3193 | 1.4640 | 0.0604 |
C4 | 4.7107 | 1.5939 | 0.5013 | 0.3261 | 0.1753 | 0.4727 | 0.0360 |
C5 | 2.1385 | 0.5469 | 0.3265 | 0.1665 | 0.1533 | 0.2285 | 0.0268 |
C6 | 1.8203 | 0.3816 | 0.2787 | 0.1314 | 0.1420 | 0.1518 | 0.0242 |
Sample ID | After Soxhlet extraction | ||||||
N2 quantity adsorbed (cm3/g) | BET surface area (m2/g) | DFT pore volume (cm3/100 g) | Meso-pore volume (cm3/100 g) | Macro-pore volume (cm3/100 g) | Meso-pore surface area (m2/g) | Macro-pore surface area (m2/g) | |
C1 | 9.8757 | 7.7749 | 1.4548 | 0.9679 | 0.3509 | 2.4518 | 0.0641 |
C2 | 10.3936 | 6.0003 | 1.5187 | 1.0000 | 0.4383 | 2.3071 | 0.0801 |
C3 | 7.4936 | 2.8556 | 1.0992 | 0.7013 | 0.3731 | 1.3219 | 0.0688 |
C4 | 5.8187 | 2.5680 | 0.5213 | 0.3612 | 0.1516 | 0.6011 | 0.0327 |
C5 | 3.8456 | 0.9292 | 0.5760 | 0.2787 | 0.2874 | 0.3914 | 0.0458 |
C6 | 2.7105 | 0.6351 | 0.4123 | 0.2041 | 0.2011 | 0.2635 | 0.0348 |
Sample ID | Pore Volume Occupied by Hydrocarbons (cm3/100 g) | Initial Sample | After Soxhlet Extraction | ||||
---|---|---|---|---|---|---|---|
Micro-Pore | Meso-Pore | Macro-Pore | D1 | D2 | D1 s | D2 s | |
C1 | 0.0344 | 0.2839 | 0.2761 | 2.6708 | 2.8770 | 2.6386 | 2.8537 |
C2 | 0.0112 | 0.4362 | 0.3115 | 2.5889 | 2.8459 | 2.5755 | 2.8319 |
C3 | −0.0095 | −0.0294 | 0.0538 | 2.5299 | 2.8059 | 2.5038 | 2.8109 |
C4 | 0.0046 | 0.0351 | −0.0237 | 2.4909 | 2.7185 | 2.5312 | 2.7528 |
C5 | 0.0871 | 0.1122 | 0.1341 | 2.5089 | 2.6855 | 2.4935 | 2.6861 |
C6 | 0.0602 | 0.0727 | 0.0591 | 2.5166 | 2.6356 | 2.4896 | 2.6678 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Y.; Ouyang, S.; Gao, J.; Shi, J.; Wu, Y.; Cheng, Y.; Zhou, Z.; Lyu, Z.; Sun, W.; Wu, H. Pore Space Characteristics and Migration Changes in Hydrocarbons in Shale Reservoir. Fractal Fract. 2024, 8, 588. https://doi.org/10.3390/fractalfract8100588
Qu Y, Ouyang S, Gao J, Shi J, Wu Y, Cheng Y, Zhou Z, Lyu Z, Sun W, Wu H. Pore Space Characteristics and Migration Changes in Hydrocarbons in Shale Reservoir. Fractal and Fractional. 2024; 8(10):588. https://doi.org/10.3390/fractalfract8100588
Chicago/Turabian StyleQu, Yiqian, Siqi Ouyang, Jianwen Gao, Jian Shi, Yiying Wu, Yuting Cheng, Zhen Zhou, Zhou Lyu, Wei Sun, and Hanning Wu. 2024. "Pore Space Characteristics and Migration Changes in Hydrocarbons in Shale Reservoir" Fractal and Fractional 8, no. 10: 588. https://doi.org/10.3390/fractalfract8100588
APA StyleQu, Y., Ouyang, S., Gao, J., Shi, J., Wu, Y., Cheng, Y., Zhou, Z., Lyu, Z., Sun, W., & Wu, H. (2024). Pore Space Characteristics and Migration Changes in Hydrocarbons in Shale Reservoir. Fractal and Fractional, 8(10), 588. https://doi.org/10.3390/fractalfract8100588