Fractal Characteristics of Pore Throat and Throat of Tight Sandstone Sweet Spot: A Case Study in the East China Sea Basin
Abstract
:1. Introduction
2. Samples and Methods
2.1. Geological Background and Samples
2.2. Experimental Measurements
2.2.1. SEM
2.2.2. CRMI
2.2.3. HPMI
2.2.4. NMR
2.3. Methodology
2.3.1. NMR Movable Fluid Spectrum Conversion
2.3.2. Fractal Method
3. Results
3.1. Petrographic Characteristics and Pore Types
3.2. Pore Throat Size Distribution Characteristics
3.2.1. Constant-Rate Mercury Injection Experiment Result
3.2.2. High-Pressure Mercury Injection Experiment Result
3.2.3. Nuclear Magnetic Resonance Result
3.3. Full-Size Pore Throat Radius Distribution
3.4. Fractal Dimension
4. Discussion
4.1. Full-Size Pore Throat Radius Distribution Characteristics
4.2. Relationship Between Fractal Dimension and Pore Throat Structure Parameters
4.3. Effect of Mineral Composition on Fractal Dimension
5. Conclusions
- (1)
- The tight sandstones of the H4 and H5 members were mainly composed of feldspathic quartzose and a small amount of feldspathic litharenite and litharenite. The porosity range of these tight sandstones was 1.2–16.4%, with an average value of 8.27%. The permeability range was 0.0232–156 mD, and the average value was 1.5 mD. The most common pore types in the research area were feldspar dissolved pores and debris dissolved pores, followed by intragranular dissolved pores, intergranular pores, and moldic pores.
- (2)
- The average throat radius of the CRMI was mainly distributed between 0.489 μm and 2.669 μm, and the average throat radii of the type I (TI), type II (TII), and type III (TIII) sweet spots were 1.54 μm, 0.855 μm, and 0.55 μm, respectively. The average PTR of the HPMI was mainly distributed between 0.06 μm and 7.97 μm, and the average PTRs of the TI, TII, and TIII sweet spots were 3.19 μm, 0.39 μm, and 0.12 μm, respectively. The average T2cut-off values of the TI, TII, and TIII sweet spots were 7.18 ms, 7.3 ms, and 8.7 ms, respectively. A characterization method for the full-size PTR distribution of the tight sandstone sweet spots was established by integrating HPMI and NMR techniques, and the full-size PTR distribution of the three types of sweet spots was determined. The full-size PTR distribution curve exhibited bimodal or unimodal characteristics, and the peak values of the PTR distribution of the TI, TII, and TIII sweet spots were mainly concentrated in 0.002–22.5 μm, 0.001–2.5 μm, and 0.0004–0.9 μm.
- (3)
- Based on fractal theory, the fractal dimensions of the entire PTR and throat radius were calculated. The throat can be divided into two segments, and the average fractal dimensions Dt1 and Dt2 of the small throat and large throat were 2.83 and 2.907, respectively. Similarly, the pore throats can be divided into two segments, and the average fractal dimensions Dp1 and Dp2 of the small and large pore throats were 2.74 and 2.65, respectively. The ranges of the fractal dimensions Dt and Dp of the throat radius and PTR were 2.691–2.954 and 2.648–2.749, respectively. The average throat radius fractal dimensions of the TI, TII, and TIII sweet spots were 2.925, 2.875, and 2.786, respectively. The average PTR fractal dimensions of the TI, TII, and TIII sweet spots were 2.677, 2.684, and 2.702, respectively.
- (4)
- The throat radius fractal dimension of the TI, TII, and TIII sweet spots was positively correlated with mercury saturation and average throat radius, and negatively correlated with displacement pressure. The PTR fractal dimension of the TI, TII, and TIII sweet spots was positively correlated with displacement pressure. The throat radius fractal dimension, mercury saturation, and average throat radius of the TI sweet spot were larger than that of the TII and TIII sweet spots, indicating that the throat radius heterogeneity of the TI sweet spot was greater than that of the TII and TIII sweet spots. The PTR fractal dimension of the TI sweet spot was smaller than that of the TII and TIII sweet spots, and the heterogeneity of the PTR increased or was not significant from the TI and TII sweet spots to the TIII sweet spot.
- (5)
- The effect of mineral composition on the fractal dimension was elaborated. The throat radius fractal dimension of the TI, TII, and TIII sweet spots was negatively correlated with quartz content and carbonate cement content, and positively correlated with feldspar content and clay mineral content. The PTR fractal dimension of the TI, TII, and TIII sweet spots was positively correlated with quartz content and carbonate cement content, and negatively correlated with feldspar content and clay mineral content. With the increase in quartz content, the throat radius heterogeneity of the TI sweet spot was greater than that of the TII and TIII sweet spots. The PTR fractal dimension increased with the increase in quartz content. The dissolution of feldspar produced many pores and throats, which increased the throat radius heterogeneity. With the increase in feldspar content, the PTR heterogeneity from the TIII and TII sweet spots to the TI sweet spot gradually decreased. The carbonate cement mainly occupied the pore space, and the heterogeneity of the PTR increased with the increase in carbonate cement content. The increase in clay minerals complicated the throat radius heterogeneity.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Golab, A.N.; Knackstedt, M.A.; Averdunk, H.; Senden, T.; Butcher, A.R.; Jaime, P. 3D porosity and mineralogy characterization in tight gas sandstones. Lead Edge 2010, 29, 1476–1483. [Google Scholar] [CrossRef]
- Yao, Y.B.; Liu, D.M. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals. Fuel 2012, 95, 152–158. [Google Scholar] [CrossRef]
- Qu, Y.Q.; Sun, W.; Tao, R.D.; Luo, B.; Chen, L.; Ren, D.Z. Pore-throat structure and fractal characteristics of tight sandstones in Yanchang Formation, Ordos Basin. Mar. Pet. Geol. 2020, 120, 104573. [Google Scholar] [CrossRef]
- Clarkson, C.R.; Freeman, M.; He, L.; Agamalian, M.; Melnichenko, Y.B.; Mastalerz, M.; Bustin, R.M.; Radlinski, A.P.; Blach, T.P. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis. Fuel 2012, 95, 371–385. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, Z.X.; Liu, K.Y.; Tan, J.Q.; Gao, F.L.; Wang, P.F. Pore structure characterization for organic-rich lower silurian shale in the upper yangtze platform, south China: A possible mechanism for pore development. J. Nat. Gas Sci. Eng. 2017, 46, 1–15. [Google Scholar] [CrossRef]
- Li, P.; Zheng, M.; Bi, H.; Wu, S.T.; Wang, X.R. Pore throat str ucture and fractal characteristics of tight oil sandstone: A case study in the Ordos Basin, China. J. Pet. Sci. Eng. 2017, 149, 665–674. [Google Scholar] [CrossRef]
- Huang, H.X.; Sun, W.; Ji, W.M.; Zhang, R.H.; Du, K.; Zhang, S.H.; Ren, D.Z.; Wang, Y.W.; Chen, L.; Zhang, X. Effects of pore-throat structure on gas permeability in the tight sandstone reservoirs of the Upper Triassic Yanchang formation in the Western Ordos Basin, China. J. Pet. Sci. Eng. 2018, 162, 602–616. [Google Scholar] [CrossRef]
- Nie, R.S.; Zhou, J.; Chen, Z.X.; Liu, J.C.; Pan, Y. Pore structure characterization of tight sandstones via a novel integrated method: A case study of the Sulige gas field, Ordos Basin (Northern China). J. Asian Earth Sci. 2021, 213, 104739. [Google Scholar] [CrossRef]
- Guo, X.B.; Huang, Z.L.; Zhao, L.B.; Han, W.; Ding, C.; Sun, X.W.; Yan, R.T.; Zhang, T.H.; Yang, X.J.; Wang, R.M. Pore structure and multi-fractal analysis of tight sandstone using MIP, NMR and NMRC methods: A case study from the Kuqa depression, China. J. Pet. Sci. Eng. 2019, 178, 544–558. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.S.; Pan, Z.J.; Niu, X.L.; Yu, Y.; Meng, S.Z. Pore structure and its fractal dimensions of transitional shale: A cross-section from east margin of the Ordos Basin, China. Fuel 2019, 241, 417–431. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, X.X. Study on characteristics parameters of coal core structure on fractal theory. J. Henan Univ. (Nat. Sci.) 2023, 53, 729–737. [Google Scholar]
- Zhang, C.; Guan, P.; Zhang, J.H.; Liang, X.W.; Ding, X.N.; You, Y. A review of the progress on fractal theory to characterize the pore structure of unconventional oil and gas reservoirs. Acta Sci. Nat. Universiatis Pekin. 2023, 59, 897–908. [Google Scholar]
- Mayo, S.; Josh, M.; Nesterets, Y.; Esteban, L.; Pervukhina, M.; Clennell, M.B.; Maksimenko, A.; Hall, C. Quantitative micro-porosity characterization using synchrotron micro-CT and xenon K-edge subtraction in sandstones, carbonates, shales and coal. Fuel 2015, 154, 167–173. [Google Scholar] [CrossRef]
- Ren, D.Z.; Zhou, D.S.; Liu, D.K.; Dong, F.J.; Ma, S.W.; Huang, H. Formation mechanism of the Upper Triassic Yanchang Formation tight sandstone reservoir in Ordos Basin—Take Chang 6 reservoir in Jiyuan oil field as an example. J. Pet. Sci. Eng. 2019, 178, 497–505. [Google Scholar] [CrossRef]
- Wu, Y.P.; Liu, C.L.; Ouyang, S.Q.; Luo, B.; Zhao, D.D.; Sun, W.; Sarwar Awan, R.; Lu, Z.D.; Li, G.X.; Zang, Q.B. Investigation of pore-throat structure and fractal characteristics of tight sandstones using HPMI, CRMI, and NMR methods: A case study of the lower Shihezi Formation in the Sulige area, Ordos Basin. J. Pet. Sci. Eng. 2022, 210, 110053. [Google Scholar] [CrossRef]
- Nooruddin, H.A.; Hossain, M.E.; Al-Yousef, H.; Okasha, T. Comparison of permeability models using mercury injection capillary pressure data on carbonate rock samples. J. Pet. Sci. Eng. 2014, 121, 9–22. [Google Scholar] [CrossRef]
- Huang, H.X.; Chen, L.; Sun, W.; Xiong, F.Y.; Ji, W.; Jia, J.K.; Tang, X.L.; Zhang, S.H.; Gao, J.W.; Luo, B. Pore-throat structure and fractal characteristics of Shihezi formation tight gas sandstones in the Ordos Basin, China. Fractals 2018, 26, 1–22. [Google Scholar] [CrossRef]
- Liu, W.; Lu, S.F.; Wang, M.; Zhang, S.X.; Liu, Y.; Zhou, N.W.; Guan, Y.; Wang, H.L. Overall pore characterization of tight sandstone reservoir space and its significance: A case study of the outer expansion area of Long 26 in Longhupao oilfield, Songliao Basin. J. Northeast. Pet. Univ. 2018, 42, 41–51. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; Freeman: San Francisco, CA, USA, 1983. [Google Scholar]
- Zhang, Z.; Weller, A. Fractal dimension of pore-space geometry of an Eocene sandstone formation Fractal dimension of pore-space geometry. Geophysics 2014, 79, 377–387. [Google Scholar] [CrossRef]
- Li, K.; Horne, R.N. Fractal modeling of capillary pressure curves for the Geysers rocks. Geothermics 2006, 35, 198–207. [Google Scholar] [CrossRef]
- Liu, D.K.; Sun, W.; Ren, D.Z.; Li, C.Z. Quartz cement origins and impact on storage performance in Permian Upper Shihezi Formation tight sandstone reservoirs in the northern Ordos Basin, China. J. Pet. Sci. Eng. 2019, 178, 485–496. [Google Scholar] [CrossRef]
- Wang, W.G.; Lin, C.Y.; Zhang, X.G. Fractal dimension analysis of pore throat structure in tight sandstone reservoirs of Huagang Formation: Jiaxing area of East China Sea Basin. Fractal Fract. 2024, 8, 374. [Google Scholar] [CrossRef]
- Deng, Y.H. Analysis on differences of petroleum type and geological conditions between two depression belts in China offshore. Acta Pet. Sin. 2009, 30, 1–8. [Google Scholar]
- Dai, L.M.; Li, S.Z.; Lou, D.; Liu, X.; Suo, Y.H.; Yu, S. Numerical modeling of late Miocene tectonic inversion in the Xihu Sag, East China Sea Shelf Basin, China. J. Asian Earth Sci. 2014, 86, 25–37. [Google Scholar] [CrossRef]
- Suo, Y.H.; Li, S.Z.; Yu, S.; Somerville, I.D.; Liu, X.; Zhao, S.J.; Dai, L.M. Cenozoic tectonic jumping and implications for hydrocarbon accumulation in basins in the East Asia Continental Margin. J. Asian Earth Sci. 2014, 88, 28–40. [Google Scholar] [CrossRef]
- Liu, J.S.; Zhang, S.P. Natural gas migration and accumulation patterns in the central-north Xihu Sag, East China Sea Basin. Nat. Gas Geosci. 2021, 32, 1163–1176. [Google Scholar]
- Zhang, J.P.; Zhang, T.; Tang, X.J. Basin type and dynamic environment in the East China Sea Shelf Basin. Acta Geol. Sin. 2014, 88, 2033–2043, (In Chinese with English abstract). [Google Scholar]
- Zhang, S.L.; Zhang, J.P.; Tang, X.J.; Zhang, T. Geometry characteristic of the fault system in Xihu sag in East China Sea and its formation mechanism. Mar. Geol. Quat. Geol. 2014, 34, 87–94, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Wang, W.G.; Lin, C.Y.; Zhang, X.G.; Dong, C.M.; Ren, L.H.; Lin, J.L. Discussion of seismic diagenetic facies of deep reservoir in the East China Sea Basin. J. Pet. Sci. Eng. 2022, 208, 109352. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Li, Y.; Zhou, J.; Gu, S.X. Geochemical characteristics of tertiary coal-bearing source rocks in Xihu depression, East China Sea Basin. Mar. Pet. Geol. 2012, 35, 154–165. [Google Scholar] [CrossRef]
- Wang, W.G.; Lin, C.Y.; Zhang, X.G.; Dong, C.M.; Ren, L.H.; Lin, J.L. Provenance, clastic composition and their impact on diagenesis: A case study of the Oligocene sandstone in the Xihu sag, East China Sea Basin. Mar. Pet. Geol. 2021, 126, 104890. [Google Scholar] [CrossRef]
- Zhang, Z.; He, X.; Tang, X.; Zhu, H. Structural trap characteristics and reservoir types in Xihu Sag, East China Sea Basin. Mar. Geol. Front. 2022, 38, 27–35. [Google Scholar]
- Zhang, F.; Jiang, Z.X.; Sun, W.; Li, Y.H.; Zhang, X.; Zhu, L.; Wen, M. A multiscale comprehensive study on pore structure of tight sandstone reservoir realized by nuclear magnetic resonance, high pressure mercury injection and constant-rate mercury injection penetration test. Mar. Pet. Geol. 2019, 109, 208–222. [Google Scholar] [CrossRef]
- Li, A.F.; Ren, X.X.; Wang, G.J.; Wang, Y.Z.; Jiang, K.L. Characterization of pore structure of low permeability reservoirs using a nuclear magnetic resonance method. J. China Univ. Pet. (Ed. Nat. Sci.) 2015, 39, 92–98. [Google Scholar]
- Zhu, W.B.; Zhang, X.H.; Zhou, D.R.; Fang, C.G.; Li, J.Q.; Huang, Z.Q. New cognition on pore structure characteristics of Permian marine shale in the Lower Yangtze Region and its implications for shale gas exploration. Nat. Gas Ind. 2021, 41, 41–55. [Google Scholar] [CrossRef]
- Folk, R.L.; Andrews, P.B.; Lewis, D.W. Detrital sedimentary rock classification and nomenclature for use in New Zealand. N. Z. J. Geol. Geophys. 1970, 3, 937–968. [Google Scholar] [CrossRef]
- Xie, X.H.; Deng, H.C.; Fu, M.Y.; Hu, L.X.; He, J.H. Evaluation of pore structure characteristics of four types of continental shales with the aid of low-pressure nitrogen adsorption and an improved FE-SEM technique in Ordos Basin, China. J. Pet. Sci. Eng. 2021, 197, 108018. [Google Scholar] [CrossRef]
- Xiang, J.; Zhu, Y.M.; Wang, Y.; Chen, S.B.; Jiang, Z.F. Structural deformation and its pore-fracture system response of the Wufeng-Longmaxi shale in the Northeast Chongqing area, using FESEM, gas adsorption, and SAXS. J. Pet. Sci. Eng. 2022, 209, 109877. [Google Scholar] [CrossRef]
- Peng, S.; Zhang, T.W.; Loucks, R.G.; James, S. Application of mercury injection capillary pressure to mudrocks: Conformance and compression corrections. Mar. Pet. Geol. 2017, 88, 30–40. [Google Scholar] [CrossRef]
- Mayka, S.; Fernandes, C.P.; da Cunha Neto, J.A.B.; Wolf, F.G.; dos Santos, V.S.S. Characterization of pore systems in seal rocks using nitrogen gas adsorption combined with mercury injection capillary pressure techniques. Mar. Pet. Geol. 2013, 39, 138–149. [Google Scholar]
- Xiao, D.S.; Zheng, L.H.; Xing, J.L.; Wang, M.; Wang, R.; Guan, X.D.; Guo, X.Y. Coupling control of organic and inorganic rock components on porosity and pore structure of lacustrine shale with medium maturity: A case study of the Qingshankou Formation in the southern Songliao Basin. Mar. Pet. Geol. 2024, 164, 106844. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, M.; Li, Y.Y.; Jiang, Z.X.; Deng, Y.; Qin, J.H. Multi-scale pore structure characterization of lacustrine fine-grained mixed sedimentary rocks and its controlling factors: A case study of Lucaogou Formation in Jimusar Sag. Energy Fuels 2023, 37, 977–992. [Google Scholar] [CrossRef]
- Teng, J.B.; Qiu, L.W.; Zhang, S.P.; Ma, C.F. Origin and diagenetic evolution of dolomites in paleogene Shahejie Formation lacustrine organic shale of Jiyang depression, Bohai Bay Basin, east China. Pet. Explor. Dev. 2022, 49, 1251–1265. [Google Scholar] [CrossRef]
- Zhang, Q.P. Study on Microscopic Pore Throat Structure and Grading Evaluation of Chang 7 Tight Sandstone Reservoirs in Jiyuan Area, Ordos Basin. Ph.D. Thesis, Northwest University, Xi’an, China, 2022; pp. 1–15. [Google Scholar]
- Hansen, J.P.; Skjeltorp, A.T. Fractal pore space and rock permeability implications. Phys. Rev. B 1988, 38, 2635–2638. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.Y.; Hu, Q.H.; Yang, S.Y.; Zhang, T.; Qiao, H.G.; Meng, M.M.; Zhu, X.C.; Sun, X.H. Pore structure typing and fractal characteristics of lacustrine shale from Kongdian Formation in East China. J. Nat. Gas Sci. Eng. 2021, 85, 1–16. [Google Scholar] [CrossRef]
- Chang, J.Q.; Fan, X.D.; Jiang, Z.X.; Wang, X.M.; Chen, L.; Li, J.T.; Zhu, L.; Wan, C.X.; Chen, Z.X. Differential impact of clay minerals and organic matter on pore structure and its fractal characteristics of marine and continental shales in China. Appl. Clay Sci. 2022, 216, 106334. [Google Scholar] [CrossRef]
- Li, K.W. Analytical derivation of Brooks-Corey type capillary pressure models using fractal geometry and evaluation of rock heterogeneity. J. Pet. Sci. Eng. 2010, 73, 20–26. [Google Scholar] [CrossRef]
Well Name | Depth (m) | Sweet Spot Type | Displacement Pressure (MPa) | Average Throat Radius (μm) | Average Pore Radius (μm) | Average Pore to Throat Radius Ratio | Average Pore Volume (cm3/g) | Mercury Saturation (%) |
---|---|---|---|---|---|---|---|---|
A4 | 3916.5 | Type I | 0.379 | 1.007 | 124.58 | 155.3 | 15.82 | 60.42 |
A4 | 3917.9 | Type I | 0.479 | 0.937 | 147.84 | 190.1 | 15.82 | 58.94 |
A4 | 3942.5 | Type I | 0.112 | 2.669 | 134.45 | 99.8 | 28.82 | 68.9 |
A4 | 3910.4 | Type II | 0.689 | 0.855 | 148.22 | 195.1 | 24.79 | 52.44 |
A4 | 3911.7 | Type III | 1.017 | 0.611 | 154.63 | 294 | 24.71 | 42.2 |
A4 | 3915.4 | Type III | 0.689 | 0.489 | 129.23 | 288.3 | 10.62 | 38.9 |
Well Name | Depth (m) | Porosity (%) | Permeability (mD) | Sweet Spot Type | Maximum Mercury Saturation (%) | Relative Sorting Coefficient | Skewness | Average Pore Throat Radius (μm) | Displacement Pressure (MPa) | Efficiency of Mercury Withdrawal (%) |
---|---|---|---|---|---|---|---|---|---|---|
A2 | 3971.6 | 11.3 | 2.04 | Type I | 80.66 | 0.31 | 2 | 0.79 | 0.3 | 25.98 |
A4 | 3915.9 | 13.1 | 16 | Type I | 95.22 | 0.34 | 0.96 | 7.97 | 0.01 | 24.21 |
A4 | 3918 | 12.8 | 2.79 | Type I | 96.47 | 0.22 | 1.09 | 0.81 | 0.2 | 28.46 |
A2 | 3976 | 9.1 | 0.728 | Type II | 96.45 | 0.2 | 1.53 | 0.62 | 0.3 | 34.72 |
A2 | 3983.6 | 9.2 | 0.234 | Type II | 81.61 | 0.26 | 1.66 | 0.17 | 1.5 | 38.58 |
A4 | 3910.1 | 9.3 | 0.441 | Type II | 81.78 | 0.28 | 1.84 | 0.38 | 0.3 | 37.3 |
A3 | 3994 | 5.7 | 0.134 | Type III | 69 | 0.41 | 1.49 | 0.14 | 1.5 | 44.69 |
A3 | 3999.5 | 7 | 0.15 | Type III | 73.67 | 0.34 | 1.5 | 0.13 | 1.5 | 42.32 |
A3 | 4012.5 | 5.3 | 0.108 | Type III | 69.46 | 0.4 | 1.51 | 0.16 | 1.5 | 40.3 |
A3 | 4111.2 | 4.7 | 0.0598 | Type III | 57.99 | 0.57 | 1.42 | 0.06 | 3 | 45.36 |
A3 | 4112.7 | 4.7 | 0.076 | Type III | 62.58 | 0.5 | 1.42 | 0.08 | 1.5 | 43.66 |
A3 | 4117.2 | 5.9 | 0.0804 | Type III | 70.66 | 0.38 | 1.45 | 0.11 | 2 | 43.76 |
A3 | 4120.2 | 6.3 | 0.146 | Type III | 66.25 | 0.45 | 1.48 | 0.13 | 1.5 | 43.55 |
Sample Number | Well Name | Depth (m) | Sweet Spot Type | T2cut-off (ms) | Movable Fluid Saturation (%) | Movable Fluid Porosity (%) |
---|---|---|---|---|---|---|
Sample # 1 | A2 | 3971.6 | Type I | 3.87 | 72.06 | 7.91 |
Sample # 2 | A4 | 3915.9 | Type I | 8.03 | 70.49 | 8.23 |
Sample # 3 | A4 | 3918 | Type I | 9.64 | 68.02 | 9.08 |
Sample # 4 | A2 | 3976 | Type II | 6.69 | 67.11 | 7.43 |
Sample # 5 | A2 | 3983.6 | Type II | 5.57 | 42.46 | 3.61 |
Sample # 6 | A4 | 3910.1 | Type II | 9.64 | 59.07 | 5.36 |
Sample # 7 | A3 | 3994 | Type III | 6.69 | 55.85 | 3.12 |
Sample # 8 | A3 | 3999.5 | Type III | 6.69 | 56.83 | 3.46 |
Sample # 9 | A3 | 4012.5 | Type III | 8.03 | 57.24 | 3.98 |
Sample # 10 | A3 | 4111.2 | Type III | 11.57 | 49.24 | 2.41 |
Sample # 11 | A3 | 4112.7 | Type III | 11.57 | 45.81 | 2.11 |
Sample # 12 | A3 | 4117.2 | Type III | 9.64 | 49.21 | 2.9 |
Sample # 13 | A3 | 4120.2 | Type III | 6.69 | 56.34 | 3.43 |
Sample Number | Well Name | Depth (m) | Sweet Spot Type | Small Pore Throat | Large Pore Throat | Inflection Point (μm) | ||||
---|---|---|---|---|---|---|---|---|---|---|
C | n | R2 | C | n | R2 | |||||
Sample # 1 | A2 | 3971.6 | Type I | 0.0021 | 0.627 | 0.9992 | 0.1472 | 2.29 | 0.9858 | 0.65 |
Sample # 2 | A4 | 3915.9 | Type I | 0.1795 | 2.704 | 0.9803 | 0.0039 | 0.726 | 0.9312 | 0.87 |
Sample # 3 | A4 | 3918 | Type I | 0.0179 | 1.277 | 0.9699 | 0.0046 | 0.996 | 0.9091 | 1.57 |
Sample # 4 | A2 | 3976 | Type II | 0.0178 | 1.024 | 0.9939 | 0.1444 | 2.573 | 0.9262 | 0.95 |
Sample # 5 | A2 | 3983.6 | Type II | 0.0012 | 0.43 | 0.9925 | 0.0855 | 3.125 | 0.8716 | 0.2 |
Sample # 6 | A4 | 3910.1 | Type II | 0.0042 | 0.971 | 0.9768 | 0.0042 | 1.169 | 0.9382 | 0.62 |
Sample # 7 | A3 | 3994 | Type III | 0.0009 | 0.923 | 0.9976 | 0.2413 | 7.764 | 0.8789 | 0.49 |
Sample # 8 | A3 | 3999.5 | Type III | 0.0013 | 0.996 | 0.9979 | 0.1397 | 4.983 | 0.9123 | 0.42 |
Sample # 9 | A3 | 4012.5 | Type III | 0.0012 | 0.937 | 0.9994 | 0.0536 | 2.723 | 0.8822 | 0.27 |
Sample # 10 | A3 | 4111.2 | Type III | 0.0004 | 0.923 | 0.9996 | 0.0244 | 3.238 | 0.8791 | 0.1 |
Sample # 11 | A3 | 4112.7 | Type III | 0.0003 | 0.811 | 0.9993 | 0.0287 | 2.866 | 0.8774 | 0.13 |
Sample # 12 | A3 | 4117.2 | Type III | 0.0011 | 0.961 | 0.9995 | 0.046 | 3.147 | 0.8789 | 0.18 |
Sample # 13 | A3 | 4120.2 | Type III | 0.0006 | 0.86 | 0.9996 | 0.0589 | 3.112 | 0.8783 | 0.26 |
Well Name | Depth (m) | Sweet Spot Type | Dt1 | R2 | Dt2 | R2 | Dt | Dp1 | R2 | Dp2 | R2 | Dp |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A4 | 3916.5 | Type I | 2.835 | 0.9998 | 2.97 | 0.9335 | 2.916 | 2.71 | 0.9994 | 2.664 | 0.9871 | 2.682 |
A4 | 3917.9 | Type I | 2.848 | 0.9994 | 2.958 | 0.927 | 2.905 | 2.738 | 0.9982 | 2.566 | 0.9754 | 2.648 |
A4 | 3942.5 | Type I | 2.904 | 0.9344 | 2.98 | 0.9094 | 2.954 | 2.762 | 0.9566 | 2.671 | 0.992 | 2.702 |
A4 | 3910.4 | Type II | 2.828 | 0.9988 | 2.929 | 0.911 | 2.875 | 2.754 | 0.999 | 2.499 | 0.9995 | 2.684 |
A4 | 3911.7 | Type III | 2.833 | 0.999 | 2.953 | 0.8459 | 2.88 | 2.777 | 0.9972 | 2.706 | 0.8423 | 2.749 |
A4 | 3915.4 | Type III | 2.732 | 0.9969 | 2.649 | 0.9828 | 2.691 | 2.722 | 0.997 | 2.587 | 0.9885 | 2.655 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Lin, C.; Zhang, X. Fractal Characteristics of Pore Throat and Throat of Tight Sandstone Sweet Spot: A Case Study in the East China Sea Basin. Fractal Fract. 2024, 8, 684. https://doi.org/10.3390/fractalfract8120684
Wang W, Lin C, Zhang X. Fractal Characteristics of Pore Throat and Throat of Tight Sandstone Sweet Spot: A Case Study in the East China Sea Basin. Fractal and Fractional. 2024; 8(12):684. https://doi.org/10.3390/fractalfract8120684
Chicago/Turabian StyleWang, Wenguang, Chengyan Lin, and Xianguo Zhang. 2024. "Fractal Characteristics of Pore Throat and Throat of Tight Sandstone Sweet Spot: A Case Study in the East China Sea Basin" Fractal and Fractional 8, no. 12: 684. https://doi.org/10.3390/fractalfract8120684
APA StyleWang, W., Lin, C., & Zhang, X. (2024). Fractal Characteristics of Pore Throat and Throat of Tight Sandstone Sweet Spot: A Case Study in the East China Sea Basin. Fractal and Fractional, 8(12), 684. https://doi.org/10.3390/fractalfract8120684