The Extended Weierstrass Transformation Method for the Biswas–Arshed Equation with Beta Time Derivative
Abstract
:1. Introduction
2. Definition of EWTM for Nonlinear Models with Beta Time Derivative
3. Application to the EWTM for Biswas–Arshed Equation
4. Graphical Description of Solutions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cherednik, I.V. Basic Methods of Soliton Theory; World Scientific: Singapore, 1996; Volume 25. [Google Scholar]
- Wazwaz, A.M. Partial Differential Equations and Solitary Waves Theory; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Fokas, A.S.; Zakharov, V.E. Important Developments in Soliton Theory; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Choudhury, J. Inverse scattering method for a new integrable nonlinear evolution equation under nonvanishing boundary conditions. J. Phys. Soc. Jpn. 1982, 51, 2312–2317. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering; Cambridge University Press: Cambridge, UK, 1991; Volume 149. [Google Scholar]
- Miwa, T.; Jimbo, M.; Date, E. Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras; Cambridge University Press: Cambridge, UK, 2000; Volume 135. [Google Scholar]
- Shastry, B.S.; Sutherland, B. Super Lax pairs and infinite symmetries in the 1/r 2 system. Phy. Rev. Lett. 1993, 70, 4029. [Google Scholar] [CrossRef] [PubMed]
- Sakhnovich, A. Generalized Backlund-Darboux transformation: Spectral properties and nonlinear equations. J. Math. Anal. Appl. 2001, 262, 274–306. [Google Scholar] [CrossRef]
- Rogers, C.; Schief, W.K. Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory; Cambridge University Press: Cambridge, UK, 2002; Volume 30. [Google Scholar]
- Carinena, J.F.; Ramos, A. Generalized Bäcklund–Darboux transformations in one-dimensional quantum mechanics. Int. J. Geom. Methods Mod. Phys. 2008, 5, 605–640. [Google Scholar] [CrossRef]
- Kapaev, A.A.; Hubert, E. A note on the Lax pairs for Painlevé equations. J. Phys. A Math. Gen. 1999, 32, 8145. [Google Scholar] [CrossRef]
- Lin, J.; Ren, B.; Li, H.M.; Li, Y.S. Soliton solutions for two nonlinear partial differential equations using a Darboux transformation of the Lax pairs. Phys. Rev. E 2008, 77, 036605. [Google Scholar] [CrossRef] [PubMed]
- Habibullin, I.T.; Khakimova, A.R.; Poptsova, M.N. On a method for constructing the Lax pairs for nonlinear integrable equations. J. Phys. A: Math. Theor. 2015, 49, 035202. [Google Scholar] [CrossRef]
- Conte, R. Invariant Painlevé analysis of partial differential equations. Phy. Lett. A 1989, 140, 383–390. [Google Scholar] [CrossRef]
- Zhang, S.L.; Wu, B.; Lou, S.Y. Painlevé analysis and special solutions of generalized Broer–Kaup equations. Phys. Lett. A 2002, 300, 40–48. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Integrals and derivatives of fractional order and some of their applications. 1987. Available online: https://www.scirp.org/reference/referencespapers?referenceid=2457496 (accessed on 16 July 2024).
- Atangana, A.; Kilicman, A. Analytical Solutions of the Space-Time Fractional Derivative of Advection Dispersion Equation. Math. Probl. Eng. 2013, 2013, 853127. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Shen, S.; Liu, F.; Anh, V. Numerical approximations and solution techniques for the space-time Riesz–Caputo fractional advection-diffusion equation. Numer. Algorithms 2011, 56, 383–403. [Google Scholar] [CrossRef]
- Atangana, A. Numerical solution of space-time fractional derivative of groundwater flow equation. In Proceedings of the International Conference of Algebra and Applied Analysis, Istanbul, Turkey, 20–24 June 2012; Volume 2, p. 20. [Google Scholar]
- Kilbas, A.A. Hadamard-type fractional calculus. J. Korean Math. Soc. 2001, 38, 1191–1204. [Google Scholar]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Hammad, M.A.; Khalil, R. Conformable fractional heat differential equation. Int. J. Pure Appl. Math. 2014, 94, 215–221. [Google Scholar]
- Atangana, A.; Baleanu, D.; Alsaedi, A. New properties of conformable derivative. Open Math. 2015, 13, 889–898. [Google Scholar] [CrossRef]
- Akbulut, A.; Kaplan, M. Auxiliary equation method for time-fractional differential equations with conformable derivative. Comput. Math. Appl. 2018, 75, 876–882. [Google Scholar] [CrossRef]
- Demiray, S.T. New solutions of Biswas-Arshed equation with beta time derivative. Optik 2020, 222, 165405. [Google Scholar] [CrossRef]
- Ilhan, E.; Kıymaz, I.O. A generalization of truncated M-fractional derivative and applications to fractional differential equations. Appl. Math. Nonlinear Sci. 2020, 5, 171–188. [Google Scholar] [CrossRef]
- Acay, B.; Bas, E.; Abdeljawad, T. Non-local fractional calculus from different viewpoint generated by truncated M-derivative. J. Comput. Appl. Math. 2020, 366, 112410. [Google Scholar] [CrossRef]
- Wang, K. New perspective to the fractal Konopelchenko–Dubrovsky equations with M-truncated fractional derivative. Int. J. Geom. Methods Mod. Phys. 2023, 20, 2350072. [Google Scholar] [CrossRef]
- Atangana, A.; Alqahtani, R.T. Modelling the spread of river blindness disease via the caputo fractional derivative and the beta-derivative. Entropy 2016, 18, 40. [Google Scholar] [CrossRef]
- Yusuf, A.; Inc, M.; Aliyu, A.I.; Baleanu, D. Optical solitons possessing beta derivative of the Chen-Lee-Liu equation in optical fibers. Front. Phys. 2019, 7, 34. [Google Scholar] [CrossRef]
- Ismael, H.F.; Bulut, H.; Baskonus, H.M.; Gao, W. Dynamical behaviors to the coupled Schrödinger-Boussinesq system with the beta derivative. AIMS Math. 2021, 6, 7909–7928. [Google Scholar] [CrossRef]
- Pandir, Y.; Akturk, T.; Gurefe, Y.; Juya, H. The modified exponential function method for beta time fractional Biswas-Arshed equation. Adv. Math. Phys. 2023, 2023, 091355. [Google Scholar] [CrossRef]
- Liu, C.S. A new trial equation method and its applications. Commun. Theor. Phys. 2006, 45, 395. [Google Scholar]
- Özyapıcı, A. Generalized trial equation method and its applications to Duffing and Poisson-Boltzmann equations. Turk. J. Math. 2017, 41, 686–693. [Google Scholar] [CrossRef]
- Pandir, Y.; Ekin, A. New solitary wave solutions of the Korteweg-de Vries (KdV) equation by new version of the trial equation method. Electron. J. Appl. Math. 2023, 1, 101–113. [Google Scholar] [CrossRef]
- Gurefe, Y.; Misirli, E.; Sonmezoglu, A.; Ekici, M. Extended trial equation method to generalized nonlinear partial differential equations. Appl. Math. Comput. 2013, 219, 5253–5260. [Google Scholar] [CrossRef]
- Postolache, M.; Gurefe, Y.; Sonmezoglu, A.; Ekici, M.; Misirli, E. Extended trial equation method and applications to some nonlinear problems. Bull. Univ. Politehica Buchar. Sci. Bull. Ser. A-Appl. Math. Phys. 2014, 76, 3–12. [Google Scholar]
- Pandir, Y.; Yasmin, H. Optical soliton solutions of the generalized sine-Gordon equation. Electron. J. Appl. Math. 2023, 1, 71–86. [Google Scholar] [CrossRef]
- Nadeem, M.; Iambor, L.F. The traveling wave solutions to a variant of the Boussinesq equation. Electron. J. Appl. Math. 2023, 1, 26–37. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations. Appl. Math. Comput. 2007, 184, 1002–1014. [Google Scholar] [CrossRef]
- Demirbilek, U.; Nadeem, M.; Çelik, F.M.; Bulut, H.; Şenol, M. Generalized extended (2+1)-dimensional Kadomtsev-Petviashvili equation in fluid dynamics: Analytical solutions, sensitivity and stability analysis. Nonlinear Dyn. 2024, 112, 13393–13408. [Google Scholar] [CrossRef]
- Zhang, R.F.; Li, M.C.; Yin, H.M. Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo-Miwa equation. Nonlinear Dyn. 2021, 103, 1071–1079. [Google Scholar] [CrossRef]
- Zhang, R.F.; Li, M.C. Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 2022, 108, 521–531. [Google Scholar] [CrossRef]
- Wang, M.L. Applicatian of homogeneous balance method to exact solutions of nonlinear equation in mathematical physics. Phys. Lett. A 1996, 216, 67–75. [Google Scholar] [CrossRef]
- Mirzazadeh, M. The extended homogeneous balance method and exact 1-soliton solutions of the Maccari system. Comput. Methods Differ. Equ. 2014, 2, 83–90. [Google Scholar]
- Fu, Z.; Liu, S.; Liu, S.; Zhao, Q. New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations. Phys. Lett. A 2001, 290, 72–76. [Google Scholar] [CrossRef]
- Elboree, M.K. The Jacobi elliptic function method and its application for two component BKP hierarchy equations. Comput. Math. Appl. 2011, 62, 4402–4414. [Google Scholar] [CrossRef]
- Kudryashov, N.A. One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2248–2253. [Google Scholar] [CrossRef]
- Gurefe, Y. The generalized Kudryashov method for the nonlinear fractional partial differential equations with the beta-derivative. Rev. Mex. Física 2020, 66, 771–781. [Google Scholar] [CrossRef]
- Malik, S.; Hashemi, M.S.; Kumar, S.; Rezazadeh, H.; Mahmoud, W.; Osman, M.S. Application of new Kudryashov method to various nonlinear partial diferential equations. Opt. Quantum Electron. 2023, 55, 8. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Exact solutions of the generalized Kuramoto-Sivashinsky equation. Phys. Lett. A 1990, 147, 287–291. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solitons Fractals 2005, 24, 1217–1231. [Google Scholar] [CrossRef]
- Pandir, Y.; Turhan, N. Multiple soliton solutions for nonlinear differential Equations with a new version of extended F-expansion method. Proc. Nat. Acad. Sci. India Sect. A 2021, 91, 495–501. [Google Scholar] [CrossRef]
- Pandir, Y.; Gurefe, Y. A new version of the generalized F-expansion method for the fractional Biswas-Arshed equation and Boussinesq equation with the beta-derivative. J. Funct. Spaces 2023, 2023, 1980382. [Google Scholar] [CrossRef]
- Eskandari, Z.; Avazzadeh, Z.; Ghaziani, R.K.; Li, B. Dynamics and bifurcations of a discrete-time Lotka-Volterra model using nonstandard finite difference discretization method. Math. Meth. Appl. Sci. 2022, 1–16. [Google Scholar] [CrossRef]
- Chen, Q.; Li, B.; Yin, W.; Jiang, X.; Chen, X. Bifurcation, chaos and fixed-time synchronization of memristor cellular neural networks. Chaos Solitons Fractals 2023, 171, 113440. [Google Scholar] [CrossRef]
- ur Rahman, M.; Sun, M.; Boulaaras, S.; Baleanu, D. Bifurcations, chaotic behavior, sensitivity analysis, and various soliton solutions for the extended nonlinear Schrödinger equation. Bound. Value Probl. 2024, 2024, 15. [Google Scholar] [CrossRef]
- Huber, A. The calculation of novel class of solutions of a non-linear fourth order evolution equation by the Weierstrass transform method. Appl. Math. Comput. 2001, 201, 668–677. [Google Scholar] [CrossRef]
- Huber, A. A novel class of solutions for a non-linear third order wave equation generated by the Weierstrass transformation. Chaos Solitons Fractals 2006, 28, 972–978. [Google Scholar] [CrossRef]
- Gurefe, Y.; Misirli, E.; Pandir, Y.; Sonmezoglu, A.; Ekici, M. New exact solutions of the Davey-Stewartson equation with power-law nonlinearity. Bull. Malays. Math. Sci. Soc. 2015, 38, 1223–1234. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D.; Alsaedi, A. Analysis of time-fractional Hunter-Saxton equation: A model of neumatic liquid crystal. Open Phys. 2016, 14, 145–149. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goktas, S.; Öner, A.; Gurefe, Y. The Extended Weierstrass Transformation Method for the Biswas–Arshed Equation with Beta Time Derivative. Fractal Fract. 2024, 8, 593. https://doi.org/10.3390/fractalfract8100593
Goktas S, Öner A, Gurefe Y. The Extended Weierstrass Transformation Method for the Biswas–Arshed Equation with Beta Time Derivative. Fractal and Fractional. 2024; 8(10):593. https://doi.org/10.3390/fractalfract8100593
Chicago/Turabian StyleGoktas, Sertac, Aslı Öner, and Yusuf Gurefe. 2024. "The Extended Weierstrass Transformation Method for the Biswas–Arshed Equation with Beta Time Derivative" Fractal and Fractional 8, no. 10: 593. https://doi.org/10.3390/fractalfract8100593
APA StyleGoktas, S., Öner, A., & Gurefe, Y. (2024). The Extended Weierstrass Transformation Method for the Biswas–Arshed Equation with Beta Time Derivative. Fractal and Fractional, 8(10), 593. https://doi.org/10.3390/fractalfract8100593