Exploring Soliton Solutions and Chaotic Dynamics in the (3+1)-Dimensional Wazwaz–Benjamin–Bona–Mahony Equation: A Generalized Rational Exponential Function Approach
Abstract
:1. Introduction
2. Dynamic System Governed from Proposed Equation
2.1. The Analysis and Graphical Visualizations of Chaos and Other Behaviors of Equation (7)
2.2. Chaos in the Proposed System
2.3. Effects of Parameters on the Chaotic Flow of the System
2.4. Some New Dynamic Properties of the Proposed Model
2.5. Sensitivity Analysis
3. Mathematical Analysis of the GREF Technique
- Step 1:From the WBBM equations, we obtain a nonlinear ordinary differential equation (NLODE) by applying the transformations defined in Equations (4) to (1)–(3).
- Step 2:
- Step 3:Calculating N by using the homogeneous balancing principle. To generate the following polynomial equation, insert NLODE into Equation (11) and gather all the terms.
- Step 4:Set each coefficient of m to zero, we obtained the set of the algebraic equation for and to be obtained.
- Step 5:Once the set of equations solved, the nontrivial solutions will be substituted into NLODE. As a result, the soliton solutions to Equations (1)–(3) will be obtained.
4. Implementation of the GREF Technique to the Governing Equation
- Family i:and ; then, Equation (10) revealsCluster 1:Cluster 2:Cluster 3:Cluster 4:Cluster 5:Cluster 6:
- Family ii:; then, Equation (10) revealsCluster 1:Cluster 2:Cluster 3:Cluster 4:Cluster 5:Cluster 6:
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lokenath, D.; Debnath, L. Nonlinear Partial Differential Equations for Scientists and Engineers; Birkhäuser: Boston, MA, USA, 2005. [Google Scholar]
- Maziar, R.; Karniadakis, G.E. Hidden physics models: Machine learning of nonlinear partial differential equations. J. Comput. Phys. 2018, 357, 125–141. [Google Scholar]
- Rui, W.; He, B.; Long, Y. The binary F-expansion method and its application for solving the (n+1)-dimensional sine-Gordon equation. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 1245–1258. [Google Scholar] [CrossRef]
- Kumar, D.; Seadawy, A.R.; Joardar, A.K. Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chin. J. Phys. 2018, 56, 75–85. [Google Scholar] [CrossRef]
- Saifullah, S.; Ahmad, S.; Alyami, M.A.; Inc, M. Analysis of interaction of lump solutions with kink-soliton solutions of the generalized perturbed KdV equation using Hirota-bilinear approach. Phys. Lett. A 2022, 454, 128503. [Google Scholar] [CrossRef]
- Abdou, M.A.; Soliman, A.A. Modified extended tanh-function method and its application on nonlinear physical equations. Phys. Lett. A 2006, 353, 487–492. [Google Scholar] [CrossRef]
- Khater, M.M.A.; Akinyemi, L.; Elagan, S.K.; El-Shorbagy, M.A.; Alfalqi, S.H.; Alzaidi, J.F.; Alshehri, N.A. Bright–dark soliton waves’ dynamics in pseudo spherical surfaces through the nonlinear Kaup–Kupershmidt equation. Symmetry 2021, 13, 963. [Google Scholar] [CrossRef]
- Mawa, H.Z.M.; Islam, S.M.R.; Bashar, M.H.; Roshid, M.M.; Islam, J.; Rahman, M.M.; Akter, S. Analytical Soliton Solutions and Wave Profiles for the Ba Model and the (3+1)-Dimensional Kp Equation by Using an Advanced-Expansion Scheme. Available online: https://ssrn.com/abstract=4541425 (accessed on 13 September 2024).
- Al-Mamun, A.; Ananna, S.N.; An, T.; Asaduzzaman, M.; Munnu Miah, M. Solitary wave structures of a family of 3D fractional WBBM equation via the tanh–coth approach. Partial. Differ. Equ. Appl. Math. 2022, 5, 100237. [Google Scholar] [CrossRef]
- Arife, A.S. The modified variational iteration transform method (MVITM) for solve non linear partial differential equation (NLPDE). World Appl. Sci. J. 2011, 12, 2274–2278. [Google Scholar]
- Mhadhbi, N.; Gana, S.; Alsaeedi, M.F. Exact solutions for nonlinear partial differential equations via a fusion of classical methods and innovative approaches. Sci. Rep. 2024, 14, 6443. [Google Scholar] [CrossRef]
- Khan, M.I.; Farooq, A.; Nisar, K.S.; Shah, N.A. Unveiling new exact solutions of the unstable nonlinear Schrödinger equation using the improved modified Sardar sub-equation method. Results Phys. 2024, 59, 107593. [Google Scholar] [CrossRef]
- Yomba, E. The extended fan sub-equation method and its application to the (2 + 1)-dimensional dispersive long wave and Whitham-Broer-Kaup equations. Chin. J. Phys. 2005, 43, 789–805. [Google Scholar]
- Cinar, M.; Onder, I.; Secer, A.; Yusuf, A.; Sulaiman, T.A.; Bayram, M.; Aydin, H. Soliton Solutions of (2 + 1)(2 + 1) Dimensional Heisenberg Ferromagnetic Spin Equation by the Extended Rational sine-cosine sine-cosine and sinh-cosh sinh-cosh Method. Int. J. Appl. Comput. Math. 2021, 7, 135. [Google Scholar] [CrossRef]
- Ali, A.; Ahmad, J.; Javed, S. Dynamic investigation to the generalized Yu–Toda–Sasa–Fukuyama equation using Darboux transformation. Opt. Quantum Electron. 2024, 56, 166. [Google Scholar] [CrossRef]
- Yang, X.-F.; Deng, Z.-C.; Wei, Y. A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application. Adv. Diff. Equations 2015, 2015, 117. [Google Scholar] [CrossRef]
- Kadkhoda, N.; Jafari, H. Analytical solutions of the Gerdjikov–Ivanov equation by using exp-(ϕ(ξ))-expansion method. Optik 2017, 139, 72–76. [Google Scholar] [CrossRef]
- Yasin, S.; Khan, M.A.; Ahmad, S.; Aldosary, S.F. Abundant new optical solitary waves of paraxial wave dynamical model with kerr media via new extended direct algebraic method. Opt. Quantum Electron. 2024, 56, 925. [Google Scholar] [CrossRef]
- Ibrahim, S. Optical soliton solutions for the nonlinear third-order partial differential equation. Adv. Differ. Equations Control. Process. 2022, 29, 127–138. [Google Scholar] [CrossRef]
- Xia, Y.; He, Y.; Wang, K.; Pei, W.; Blazic, Z.; Mandic, D.P. A complex least squares enhanced smart DFT technique for power system frequency estimation. IEEE Trans. Power Deliv. 2015, 32, 1270–1278. [Google Scholar] [CrossRef]
- Al-Amr, M.O. Exact solutions of the generalized (2 + 1)-dimensional nonlinear evolution equations via the modified simple equation method. Comput. Math. Appl. 2015, 69, 390–397. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Zaghrout, A.A.; Ahmed, H.M. Travelling wave solutions for the doubly dispersive equation using improved modified extended tanh-function method. Alex. Eng. J. 2022, 61, 7987–7994. [Google Scholar] [CrossRef]
- Ali, S.; Ullah, A.; Aldosary, S.F.; Ahmad, S.; Ahmad, S. Construction of optical solitary wave solutions and their propagation for Kuralay system using tanh-coth and energy balance method. Results Phys. 2024, 59, 107556. [Google Scholar] [CrossRef]
- Ali, S.; Ahmad, J.; Javed, S. Solitary wave solutions for the originating waves that propagate of the fractional Wazwaz-Benjamin-Bona-Mahony system. Alex. Eng. J. 2023, 69, 121–133. [Google Scholar] [CrossRef]
- Javed, S.; Ali, A.; Ahmad, J.; Hussain, R. Study the dynamic behavior of bifurcation, chaos, time series analysis and soliton solutions to a Hirota model. Opt. Quantum Electron. 2023, 55, 1114. [Google Scholar] [CrossRef]
- Ahmad, S.; Aldosary, S.F.; Khan, M.A.; Rahman, M.U.; Alsharif, F.; Ahmad, S. Analyzing optical solitons in the generalized unstable NLSE in dispersive media. Optik 2024, 307, 171830. [Google Scholar] [CrossRef]
- Wazwaz, A.-M. Exact soliton and kink solutions for new (3 + 1)-dimensional nonlinear modified equations of wave propagation. Open Eng. 2017, 7, 169–174. [Google Scholar] [CrossRef]
- Abbas, N.; Bibi, F.; Hussain, A.; Ibrahim, T.F.; Dawood, A.A.; Birkea, F.M.O.; Hassan, A.M. Optimal system, invariant solutions and dynamics of the solitons for the Wazwaz Benjamin Bona Mahony equation. Alex. Eng. J. 2024, 91, 429–441. [Google Scholar] [CrossRef]
- Abdulla-Al, M.; Shahen, N.H.M.; Ananna, S.N.; Asaduzzaman, M. Solitary and periodic wave solutions to the family of new 3D fractional WBBM equations in mathematical physics. Heliyon 2021, 7, e07483. [Google Scholar]
- Xu, C.; Zhao, Y.; Lin, J.; Pang, Y.; Liu, Z.; Shen, J.; Liao, M.; Li, P.; Qin, Y. Bifurcation investigation and control scheme of fractional neural networks owning multiple delays. Comput. Appl. Math. 2024, 43, 1–33. [Google Scholar] [CrossRef]
- Xu, C.; Lin, J.; Zhao, Y.; Cui, Q.; Ou, W.; Pang, Y.; Liu, Z.; Liao, M.; Li, P. New results on bifurcation for fractional-order octonion-valued neural networks involving delays. Netw. Comput. Neural Syst. 2024, 1–53. [Google Scholar] [CrossRef]
- Xu, C.; Ou, W.; Cui, Q.; Pang, Y.; Liao, M.; Shen, J.; Baber, M.Z.; Maharajan, C.; Ghosh, U. Theoretical exploration and controller design of bifurcation in a plankton population dynamical system accompanying delay. Discret. Contin. Dyn. Syst.-S 2024. [Google Scholar] [CrossRef]
- Xu, C.; Farman, M.; Shehzad, A. Analysis and chaotic behavior of a fish farming model with singular and non-singular kernel. Int. J. Biomath. 2023, 2350105. [Google Scholar] [CrossRef]
- Iskakova, K.; Alam, M.M.; Ahmad, S.; Saifullah, S.; Akgül, A.; Yılmaz, G. Dynamical study of a novel 4D hyperchaotic system: An integer and fractional order analysis. Math. Comput. Simul. 2023, 208, 219–245. [Google Scholar] [CrossRef]
- Lin, H.; Deng, X.; Yu, F.; Sun, Y. Diversified Butterfly Attractors of Memristive HNN with Two Memristive Systems and Application in IoMT for Privacy Protection. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2024. [Google Scholar] [CrossRef]
- Ahmad, S.; Lou, J.; Khan, M.A.; Rahman, M.U. Analysing the Landau-Ginzburg-Higgs equation in the light of superconductivity and drift cyclotron waves: Bifurcation, chaos and solitons. Phys. Scr. 2023, 99, 015249. [Google Scholar] [CrossRef]
- Li, P.; Shi, S.; Xu, C.; Rahman, M.U. Bifurcations, chaotic behavior, sensitivity analysis and new optical solitons solutions of Sasa-Satsuma equation. Nonlinear Dyn. 2024, 112, 7405–7415. [Google Scholar] [CrossRef]
- Khan, A.; Saifullah, S.; Ahmad, S.; Khan, M.A.; Rahman, M.U. Dynamical properties and new optical soliton solutions of a generalized nonlinear Schrödinger equation. Eur. Phys. J. Plus 2023, 138, 1059. [Google Scholar] [CrossRef]
- Chahlaoui, Y.; Ali, A.; Ahmad, J.; Javed, S. Dynamical behavior of chaos, bifurcation analysis and soliton solutions to a Konno-Onno model. PLoS ONE 2023, 18, e0291197. [Google Scholar] [CrossRef]
- Ghanbari, B.; Inc, M. A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation. Eur. Phys. J. Plus 2018, 133, 142. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamza, A.E.; Suhail, M.; Alsulami, A.; Mustafa, A.; Aldwoah, K.; Saber, H. Exploring Soliton Solutions and Chaotic Dynamics in the (3+1)-Dimensional Wazwaz–Benjamin–Bona–Mahony Equation: A Generalized Rational Exponential Function Approach. Fractal Fract. 2024, 8, 592. https://doi.org/10.3390/fractalfract8100592
Hamza AE, Suhail M, Alsulami A, Mustafa A, Aldwoah K, Saber H. Exploring Soliton Solutions and Chaotic Dynamics in the (3+1)-Dimensional Wazwaz–Benjamin–Bona–Mahony Equation: A Generalized Rational Exponential Function Approach. Fractal and Fractional. 2024; 8(10):592. https://doi.org/10.3390/fractalfract8100592
Chicago/Turabian StyleHamza, Amjad E., Muntasir Suhail, Amer Alsulami, Alaa Mustafa, Khaled Aldwoah, and Hicham Saber. 2024. "Exploring Soliton Solutions and Chaotic Dynamics in the (3+1)-Dimensional Wazwaz–Benjamin–Bona–Mahony Equation: A Generalized Rational Exponential Function Approach" Fractal and Fractional 8, no. 10: 592. https://doi.org/10.3390/fractalfract8100592
APA StyleHamza, A. E., Suhail, M., Alsulami, A., Mustafa, A., Aldwoah, K., & Saber, H. (2024). Exploring Soliton Solutions and Chaotic Dynamics in the (3+1)-Dimensional Wazwaz–Benjamin–Bona–Mahony Equation: A Generalized Rational Exponential Function Approach. Fractal and Fractional, 8(10), 592. https://doi.org/10.3390/fractalfract8100592