Multiple Solutions for a Critical Steklov Kirchhoff Equation
Abstract
:1. Introduction
2. Preliminaries of Variational Spaces
- •
- weakly in the sense of measures;
- •
- weakly in the sense of measures.
- (c1)
- is an even functional such that ;
- (c2)
- satisfies the (PS) condition;
- (c3)
- For any , there exist a k-dimensional subspace of E () and a number () such that , where .Then, the functional has a sequence of critical points () satisfying as .
3. Main Results
- The function can be expressed as , where a and h are measurable functions satisfying the following condition: there exists , such that for all , we have
- There exists such that the Kirchhoff function (M) satisfies .
- There exists with such thatwhere .
- There exist and such that for all and , we have
- For all , we have .
- There exists a nonempty open ball () such that
- For all we have
- Operator , from X to its dual , is continuous and bounded; moreover, it is strictly monotone.
- is a mapping of the type, that is, if in X and , then strongly in X.
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alsaedi, R.; Ghanmi, A. Variational approach for the Kirchhoff problem involving the p-Laplace operator and the p-Hilfer derivative. Math. Methods Appl. Sci. 2023, 46, 9286–9297. [Google Scholar] [CrossRef]
- Ezati, R.; Nyamoradi, N. Existence of solutions to a Kirchhoff ψ-Hilfer fractional p-Laplacian equations. Math. Meth. Appl. Sci. 2021, 44, 12909–12920. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Sousa, J.V.C.; Zuo, J.; O’Regan, D. The Nehari manifold for a ψ-Hilfer fractional p-Laplacian. Appl. Anal. 2022, 101, 5076–5106. [Google Scholar] [CrossRef]
- Sousa, J.V.C. Existence and uniqueness of solutions for the fractional differential equations with p-Laplacian in J. Appl. Anal. Comput. 2022, 12, 622–661. [Google Scholar]
- Sousa, V.J.C. Nehari manifold and bifurcation for a ψ-Hilfer fractional p-Laplacian. Math. Meth. Appl. Sci. 2021, 44, 9616–9628. [Google Scholar] [CrossRef]
- Sousa, V.J.C.; Leandro, T.S.; Ledesma, C.E.T. A variational approach for a problem involving a ψ-Hilfer fractional operator. J. Appl. Anal. Comput. 2021, 11, 1610–1630. [Google Scholar] [CrossRef]
- Nouf, A.; Shammakh, W.M.; Ghanmi, A. Existence of solutions for a class of Boundary value problems involving Riemann Liouville derivative with respect to a function. Filomat 2023, 37, 1261–1270. [Google Scholar] [CrossRef]
- Lions, P.L. The concentration-compactness principle in the calculus of variations. The limit case. Rev. Mat. Iberoam. 1985, 1, 145–201. [Google Scholar] [CrossRef]
- Azorero, J.G.; Alonso, I.P. Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Am. Math. Soc. 1991, 323, 877–895. [Google Scholar] [CrossRef]
- Bahri, A.; Lions, P.L. On the existence of a positive solution of semilinear elliptic equations in unbounded domains. Ann. Inst. H. Poincaré Anal. Non Linéaire 1997, 14, 365–413. [Google Scholar] [CrossRef]
- Fu, Y. The principle of concentration compactness in Lp(x) spaces and its application. Nonlinear Anal. 2009, 71, 1876–1892. [Google Scholar] [CrossRef]
- Ghanmi, A.; Kratou, M.; Saoudi, K.; Repovš, D. Nonlocal p-Kirchhoff equations with singular and critical nonlinearity terms. Asympt. Anal. 2023, 131, 125–143. [Google Scholar] [CrossRef]
- Halsey, T.C. Electrorheological fluids. Science 1992, 258, 761–766. [Google Scholar] [CrossRef]
- Mihǎilescu, M.; RŘdulescu, V.D. A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. R. Soc. Lond. A 2006, 462, 2625–2641. [Google Scholar] [CrossRef]
- Ruzicka, M. Electrorheological Fluids: Modelling and Mathematical Theory; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1784. [Google Scholar]
- Chen, Y.; Levine, S.; Rao, M. Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 2006, 66, 1383–1406. [Google Scholar] [CrossRef]
- Ahmed, E.; Hashish, A.; Rihan, F.A. On fractional order cancer model. J. Fract. Calc. Appl. Anal. 2012, 3, 1–6. [Google Scholar]
- Chen, W.C. Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solit. Fract. 2008, 36, 1305–1314. [Google Scholar] [CrossRef]
- Corlay, S.; Lebovits, J.; Véhel, J.L. Multifractional stochastic volatility models. Math. Financ. 2014, 24, 364–402. [Google Scholar] [CrossRef]
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific Publishing Company: Singapore, 2011. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific Publ. Co.: Singapore, 2000; pp. 87–130. [Google Scholar]
- Hethcote, H.W. Three basic epidemiological models. In Applied Mathematical Ecology; Series: Biomathematics; Springer: Berlin/Heidelberg, Germany, 1989; Volume 18. [Google Scholar]
- Bonder, J.; Silva, A. Concentration-copactness principle for variable exponent spaces and applications. Electr. J. Differ. Equ. 2010, 2010, 141. [Google Scholar]
- Chammem, R.; Ganmi, A.; Sahbani, A. Existence and multiplicity of solution for some Styklov problem involving p(x)-Laplacian operator. Appl. Anal. 2022, 101, 2401–2417. [Google Scholar] [CrossRef]
- Chammem, R.; Sahbani, A. Existence and multiplicity of solution for some Styklov problem involving (p1(x), p2(x))-Laplacian operator. Appl. Anal. 2021, 102, 709–724. [Google Scholar] [CrossRef]
- Dai, G.; Hao, R. Existence of solutions for a p(x)-Kirchhoff-type equation. J. Math. Anal. Appl. 2009, 359, 275–284. [Google Scholar] [CrossRef]
- Dai, G.; Liu, D. Infinitely many positive solutions for a p(x)-Kirchhoff-type equation. J. Math. Anal. Appl. 2009, 359, 704–710. [Google Scholar] [CrossRef]
- Dai, G.; Ma, R. Solutions for a p(x)-Kirchhoff type equation with Neumann boundary data. Nonlinear Anal. Real World Appl. 2011, 12, 2666–2680. [Google Scholar] [CrossRef]
- Ambrosio, V.; Isernia, T. Concentration phenomena for a fractional Schrödinger-Kirchhoff type equation. Math. Meth. Appl. Sci. 2018, 41, 615–645. [Google Scholar] [CrossRef]
- Fiscella, A.; Pucci, P. p-fractional Kirchhoff equations involving critical nonlinearities. Nonlinear Anal. Real World Appl. 2017, 35, 350–378. [Google Scholar] [CrossRef]
- Xiang, M.; Zhang, B.; Rǎdulescu, V.D. Superlinear Schrödinger-Kirchhoff type problems involving the fractional p-Laplacian and critical exponent. Adv. Nonlinear Anal. 2020, 9, 690–709. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, Q.; Zhao, D. Eigenvalues of p(x)-Laplacian Dirichlet problem. J. Math. Anal. Appl. 2015, 302, 306–317. [Google Scholar] [CrossRef]
- Sahbani, A. Infinitely many solutions for problems involving Laplacian and biharmonic operators. Complex Var. Elliptic Equ. 2023, 1–14. [Google Scholar] [CrossRef]
- Srivastava, H.M.; da Costa Sousa, J.V. Multiplicity of Solutions for Fractional-Order Differential Equations via the p(x)-Laplacian Operator and the Genus Theory. Fract. Fract. 2022, 6, 481. [Google Scholar] [CrossRef]
- Ambrosetti, A.; Rabinowitz, P.H. Dual variational methods in critical point theory and applications. J. Func. Anal. 1973, 14, 349–381. [Google Scholar] [CrossRef]
- Kajikiya, R. A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations. J. Funct. Anal. 2005, 225, 352–370. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alyami, M.A.; Ghanmi, A. Multiple Solutions for a Critical Steklov Kirchhoff Equation. Fractal Fract. 2024, 8, 598. https://doi.org/10.3390/fractalfract8100598
Alyami MA, Ghanmi A. Multiple Solutions for a Critical Steklov Kirchhoff Equation. Fractal and Fractional. 2024; 8(10):598. https://doi.org/10.3390/fractalfract8100598
Chicago/Turabian StyleAlyami, Maryam Ahmad, and Abdeljabbar Ghanmi. 2024. "Multiple Solutions for a Critical Steklov Kirchhoff Equation" Fractal and Fractional 8, no. 10: 598. https://doi.org/10.3390/fractalfract8100598
APA StyleAlyami, M. A., & Ghanmi, A. (2024). Multiple Solutions for a Critical Steklov Kirchhoff Equation. Fractal and Fractional, 8(10), 598. https://doi.org/10.3390/fractalfract8100598