Fractional Consistent Riccati Expansion Method and Soliton-Cnoidal Solutions for the Time-Fractional Extended Shallow Water Wave Equation in (2 + 1)-Dimension
Abstract
:1. Introduction
2. Brief Descriptions of the New Proposed FCRE Method
3. Application of the FCRE Method to the TFESWW Equation (1)
3.1. Soliton Solutions and Combined-Soliton Solutions
3.1.1. One-Soliton Solution
3.1.2. Combined-Soliton Solution
3.1.3. Rational Function Solution
3.2. Soliton-Cnoidal Solutions and Combined-Soliton Solutions
3.2.1. , or
3.2.2.
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: New York, NY, USA, 1993. [Google Scholar]
- Jumarie, G. Table of some basic fractional calculus formula derived from a modified Riemann-Liouville derivative for non-differentiable functions. Appl. Math. Lett. 2009, 22, 378–385. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Gerasimov, A.N. Generalization of laws of the linear deformation and their application to problems of the internal friction. Prikl. Mat. Mekhanika 1948, 12, 251–260. (In Russian) [Google Scholar]
- Baleanu, D.; Atangana, A. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar]
- Kiryakova, V. Editorial note, FCAA related news, events and books (FCAA–volume 20–3–2017). Fract. Calc. Appl. Anal. 2017, 20, 567–573. [Google Scholar] [CrossRef]
- Kavya, K.N.; Veeresha, P.; Baskonus, H.M.; Alsulami, M. Mathematical modeling to investigate the influence of vaccination and booster doses on the spread of Omicron. Commun. Nonlinear. Sci. Numer. Simulat. 2024, 130, 107755. [Google Scholar] [CrossRef]
- Cattani, C.; Baskonus, H.M.; Ciancio, A. Introduction to the special issue on recent developments on computational biology-I. Comput. Model. Eng. Sci. 2024, 139, 2261–2264. [Google Scholar] [CrossRef]
- Wang, G.W.; Liu, X.Q.; Zhang, Y.Y. Lie symmetry analysis to the time fractional generalized fifth-order KdV equation. Commun. Nonlinear. Sci. Numer. Simulat. 2013, 18, 2321–2326. [Google Scholar] [CrossRef]
- Li, Z.B.; He, J.H. Fractional complex transform for fractional differential equations. Math. Comput. Appl. 2016, 15, 970–973. [Google Scholar] [CrossRef]
- Saad, K.M.; Baleanu, D.; Atangana, A. New fractional derivatives applied to the Korteweg-deVries and Korteweg-de Vries-Burger’s equations. Comp. Appl. Math. 2018, 37, 5203–5216. [Google Scholar] [CrossRef]
- Yang, X.J.; Machado, J.T.; Baleanu, D.; Cattani, C. A new method for exact solutions of variant types of time-fractional Korteweg-de Vries equations in shallow water waves. Chaos. Interdiscip. J. Nonlinear Sci. 2016, 26, 084312. [Google Scholar] [CrossRef]
- He, J.H. The simpler, the better: Analytical methods for nonlinear oscillators and fractional oscillators. J. Low Freq. Noise Vib. Act. Control 2019, 38, 1252–1260. [Google Scholar] [CrossRef]
- Ma, P.C.; Taghipour, M.; Cattani, C. Option pricing in the illiquid markets under the mixed fractional Brownian motion model. Chaos. Soliton. Fract. 2024, 182, 114806. [Google Scholar] [CrossRef]
- Chen, Q.L.; Dipesh; Kumar, P.; Baskonus, H.M. Modeling and analysis of demand-supply dynamics with a collectability factor using delay differential equations in economic growth via the Caputo operator. AIMS Math. 2024, 9, 7471–7491. [Google Scholar] [CrossRef]
- He, C.H.; He, J.H.; Sedighi, H.M.; El-Dib, Y.O.; Marinkovic, D.; Alsolami, A.A. Editorial: Analytical methods for nonlinear oscillators and solitary waves. Front. Phys. 2023, 11, 1309182. [Google Scholar] [CrossRef]
- Zhang, L.H.; Shen, B.; Jiao, H.B.; Wang, G.W.; Wang, Z.L. Exact solutions for the KMM system in (2 + 1)-dimensions and its fractional form with Beta-derivative. Fractal. Fract. 2022, 6, 520. [Google Scholar] [CrossRef]
- Zhang, L.H.; Wang, Z.L.; Shen, B. Fractional complex transforms, reduced equations and exact solutions of the fractional Kraenkel-Manna-Merle system. Fractals 2022, 30, 22501791. [Google Scholar] [CrossRef]
- Baleanu, D.; Inc, M.; Yusuf, A.; Aliyu, A.I. Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 222–234. [Google Scholar] [CrossRef]
- Inc, M.; Yusuf, A.; Aliyu, A.I.; Baleanu, D. Time-fractional Cahn-Allen and time-fractional Klein-Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis. Phys. A 2018, 493, 94–106. [Google Scholar] [CrossRef]
- Ovsyannikov, L.V. Group Analysis of Differential Equations; Academic: New York, NY, USA, 1982. [Google Scholar]
- Wang, G.W.; Kara, A.H.; Fakhar, K. Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation. Nonlinear Dyn. 2015, 82, 281–287. [Google Scholar] [CrossRef]
- Sahadevan, R.; Bakkyaraj, T. Invariant analysis of time fractional generalized burgers and Korteweg-de vries equations. J. Math. Anal. Appl. 2012, 393, 341–347. [Google Scholar] [CrossRef]
- Sahoo, S.; Ray, S.S. Improved fractional sub-equation method for (3 + 1)-dimensional generalized fractional KdV-Zakharov-Kuznetsov equations. Comput. Math. Appl. 2015, 70, 158–166. [Google Scholar] [CrossRef]
- Murad, M.A.S.; Ismael, H.F.; Hamasalh, F.K.; Shah, N.A.; Eldin, S.M. Optical soliton solutions for time -fractional Ginzburg-Landau equation by a modified sub-equation method. Results Phys. 2023, 53, 106950. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.Q. Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 2011, 375, 1069–1073. [Google Scholar] [CrossRef]
- Zheng, B. G′/G-expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. 2012, 58, 623–630. [Google Scholar] [CrossRef]
- Zulfiqar, A.; Ahmad, J.; Ul-Hassan, Q.M. Analysis of some new wave solutions of fractional order generalized Pochhammer-Chree equation using exp-function method. Opt. Quant. Electron. 2022, 54, 1–21. [Google Scholar] [CrossRef]
- He, J.H.; Elagan, S.K.; Li, Z.B. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 2012, 376, 257–259. [Google Scholar] [CrossRef]
- Ain, Q.T.; He, J.H.; Anjum, N.; Ali, M. The fractional complex transform: A novel approach to the time-fractional Schrodinger equation. Fractals 2020, 28, 2050141. [Google Scholar] [CrossRef]
- Naveed, A.; Ain, Q.T. Application of He’s fractional derivative and fractional complex transform for time fractional Camassa-Holm equation. Therm. Sci. 2020, 24, 3023–3030. [Google Scholar]
- Wang, X.B.; Tian, S.F.; Qin, C.Y.; Zhang, T.T. Lie symmetry analysis, conservation laws and exact solutions of the generalizeded time fractional Burgers time fractional Burgers equation. EPL-Europhys. Lett. 2016, 114, 20003. [Google Scholar] [CrossRef]
- Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: New York, NY, USA, 2004. [Google Scholar]
- Lou, S.Y.; Ma, H.C. Non-Lie symmetry groups of (2 + 1)-dimensional nonlinear systems obtained from a simple direct method. J. Phys. A Math. Gen. 2005, 38, 129–137. [Google Scholar] [CrossRef]
- Lou, S.Y. Consistent Riccati expansion for integrable systems. Stud. Appl. Math. 2015, 134, 372–402. [Google Scholar] [CrossRef]
- Ren, B.; Lin, J.; Lou, Z.M. Consistent Riccati expansion and rational solutions of the Drinfel’d-Sokolov-Wilson equation. Appl. Math. Lett. 2020, 105, 106326. [Google Scholar] [CrossRef]
- Baskonus, H.M.; Mahmud, A.A.; Muhamad, K.A.; Tanriverdi, T. A study on Caudrey-Dodd-Gibbon-Sawada-Kotera partial diferential equation. Math. Methods Appl. Sci. 2022, 45, 8737–8753. [Google Scholar] [CrossRef]
- Baskonus, H.M.; Mahmud, A.A.; Muhamad, K.A.; Tanriverdi, T.; Gao, W. Studying on Kudryashov-Sinelshchikov dynamical equation arising in mixtures liquid and gas bubbles. Therm. Sci. 2022, 26, 1229–1244. [Google Scholar] [CrossRef]
- Wazwaz, A.M. New integrable (2 + 1)-and (3 + 1)-dimensional shallow water wave equations: Multiple soliton solutions and lump solutions. Int. J. Numer. Methods Heat Fluid Flow 2022, 32, 138–149. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Hu, H.C. Novel interaction phenomena of the new (2 + 1)-dimensional extended shallow water wave equation. Mod. Phys. Lett. B 2022, 36, 22500592. [Google Scholar] [CrossRef]
- He, L.C.; Zhang, J.W.; Zhao, Z.L. M-lump and interaction solutions of a (2 + 1)-dimensional extended shallow water wave equation. Eur. Phys. J. Plus. 2021, 136, 192. [Google Scholar] [CrossRef]
- Poonam, J.; Arif, M.; Kumar, D. An enormous diversity of soliton solutions to the (2 + 1)-dimensional extended shallow water wave equation using three analytical methods. Int. J. Mod. Phys. B 2024, 38, 24501042. [Google Scholar]
- Gilson, C.R.; Nimmo, J.J.C.; Willox, R. A (2 + 1)-dimensional generalization of the AKNS shallow water wave equation. Phys. Lett. A 1993, 180, 337–345. [Google Scholar] [CrossRef]
- Clarkson, P.A.; Mansfield, E.L. On a shallow water wave equation. Nonlinearity 1994, 7, 975–1000. [Google Scholar] [CrossRef]
- Clarkson, P.A.; Mansfield, E.L. Symmetries and exact solutions for a 2 + 1-dimensional shallow water wave equation. Math. Comput. Simulat. 1997, 43, 39–55. [Google Scholar]
- Chen, Y.; Khater, M.M.A.; Inc, M.; Attia, R.A.M.; Lu, D.C. Abundant analytical solutions of the fractional nonlinear (2 + 1)-dimensional BLMP equation arising in incompressible fluid. Int. J. Mod. Phys. B 2020, 34, 2050084. [Google Scholar]
- Biswas, S.; Ghosh, U. Formation and shock solutions of the time fractional (2 + 1)- and (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equations. Int. J. Appl. Comput. Math. 2023, 9, 20. [Google Scholar] [CrossRef]
- Huo, C.L.; Li, L.Z. Lie symmetry analysis, particular solutions and conservation laws of a new extended (3 + 1)-dimensional shallow water wave equation. Symmetry 2022, 14, 1855. [Google Scholar] [CrossRef]
- Han, P.F.; Zhang, Y. Linear superposition formula of solutions for the extended (3 + 1)-dimensional shallow water wave equation. Nonlinear Dyn. 2022, 109, 1019–1032. [Google Scholar] [CrossRef]
- Raza, N.; Rani, B.; Wazwaz, A.M. A novel investigation of extended (3 + 1)-dimensional shallow water wave equation with constant coefficients utilizing bilinear form. Phys. Lett. A 2023, 485, 129082. [Google Scholar] [CrossRef]
- Chen, H.T.; Zhang, H.Q. New double periodic and multiple soliton solutions of the generalized (2 + 1)-dimensional Boussinesq equation. Appl. Math. Comput. 2004, 157, 765–769. [Google Scholar]
- Zhang, L.H. Travelling wave solutions for the generalized Zakharov-Kuznetsov equation with higher-order nonlinear terms. Appl. Math. Comput. 2009, 208, 144–155. [Google Scholar] [CrossRef]
- Saha, A. Bifurcation of travelling wave solutions for the generalized KP-MEW equations. Commun. Nonlinear Sci. Numer. Simulat. 2012, 17, 3539–3551. [Google Scholar] [CrossRef]
- Wazwaz, A. The tanh method and the sinecosine method for solving the KP-MEW equation. Int. J. Comput. Math. 2005, 82, 235–246. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Shen, B.; Jia, M.; Wang, Z.; Wang, G. Fractional Consistent Riccati Expansion Method and Soliton-Cnoidal Solutions for the Time-Fractional Extended Shallow Water Wave Equation in (2 + 1)-Dimension. Fractal Fract. 2024, 8, 599. https://doi.org/10.3390/fractalfract8100599
Zhang L, Shen B, Jia M, Wang Z, Wang G. Fractional Consistent Riccati Expansion Method and Soliton-Cnoidal Solutions for the Time-Fractional Extended Shallow Water Wave Equation in (2 + 1)-Dimension. Fractal and Fractional. 2024; 8(10):599. https://doi.org/10.3390/fractalfract8100599
Chicago/Turabian StyleZhang, Lihua, Bo Shen, Meizhi Jia, Zhenli Wang, and Gangwei Wang. 2024. "Fractional Consistent Riccati Expansion Method and Soliton-Cnoidal Solutions for the Time-Fractional Extended Shallow Water Wave Equation in (2 + 1)-Dimension" Fractal and Fractional 8, no. 10: 599. https://doi.org/10.3390/fractalfract8100599
APA StyleZhang, L., Shen, B., Jia, M., Wang, Z., & Wang, G. (2024). Fractional Consistent Riccati Expansion Method and Soliton-Cnoidal Solutions for the Time-Fractional Extended Shallow Water Wave Equation in (2 + 1)-Dimension. Fractal and Fractional, 8(10), 599. https://doi.org/10.3390/fractalfract8100599