DGGNets: Deep Gradient-Guidance Networks for Speckle Noise Reduction
Abstract
:1. Introduction
- •
- We propose a novel structure-preserving denoising method that utilizes a gradient branch to guide the recovery of coherent images. This method addresses the challenge of restoring images from heavy speckle noise while avoiding over-smoothing. To our knowledge, we are the first to leverage gradient maps to guide speckle noise reduction.
- •
- We introduce a fractional total variational loss function specifically designed to prevent detail ambiguity and over-smoothing, which are common issues with integral order methods. This approach effectively preserves rich texture and detail information in the denoised images. The effectiveness of this loss function is demonstrated through comprehensive ablation experiments.
- •
- We conduct extensive experiments on established real coherent image datasets. Our method is compared with existing approaches, and the results show that it achieves state-of-the-art performance in both quantitative metrics and visual quality.
2. Related Work
2.1. Coherent Imaging Denoising
2.2. Edge Preservation in Denoising
2.3. Fractional-Order Total Variation
3. Proposed Method
3.1. Denoising Branch
3.2. Gradient Branch
3.3. Integration of Branches
3.4. Dilation Rates in Context Blocks
3.5. Workflow
3.6. Fractional Total Variation Regularization
3.7. Loss Function
4. Experiments
4.1. Dataset and Training Settings
4.2. Experimental Results on Synthetic Noisy Images and the Ultrasound Image Dataset
4.3. Realistic Experiments on Various Types of Images
4.4. Ablation Study
5. Conclusions
6. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNN | Convolutional Neural Network |
DGGNet | Deep Gradient-Guidance Networks |
DnCNN | Denoising Convolutional Neural Network |
DRAN | Deep Residual Attention Network |
MARU | Mixed-Attention Residual U-Net |
MHM | Multiscale Hybrid Model |
MSANN | Multi-Scale Attention Network |
NLLRF | Non-Local Low-Rank Filter |
NLM | Non-Local Means |
OBNLM | Order-Based Nonlocal Means |
PSNR | Peak Signal-to-Noise Ratio |
RF | Radio-Frequency |
RIDNet | Residual Image Denoising Network |
SAR | Synthetic Aperture Radar |
SRAD | Speckle Reducing Anisotropic Diffusion |
SSIM | Structural Similarity Index |
U-Net | U-Net Network |
References
- Wang, X.; Jiao, J.; Yin, J.; Zhao, W.; Han, X.; Sun, B. Underwater sonar image classification using adaptive weights convolutional neural network. Appl. Acoust. 2019, 146, 145–154. [Google Scholar] [CrossRef]
- Iwin Thanakumar Joseph, S.; Sasikala, J.; Sujitha Juliet, D.; Velliangiri, S. Hybrid spatio-frequency domain global thresholding filter (HSFGTF) model for SAR image enhancement. Pattern Recognit. Lett. 2021, 146, 8–14. [Google Scholar] [CrossRef]
- Mugasa, H.; Dua, S.; Koh, J.E.; Hagiwara, Y.; Lih, O.S.; Madla, C.; Kongmebhol, P.; Ng, K.H.; Acharya, U.R. An adaptive feature extraction model for classification of thyroid lesions in ultrasound images. Pattern Recognit. Lett. 2020, 131, 463–473. [Google Scholar] [CrossRef]
- Sagheer, S.V.M.; George, S.N. A review on medical image denoising algorithms. Biomed. Signal Process. Control 2020, 61, 102036. [Google Scholar]
- Baselice, F.; Ferraioli, G.; Pascazio, V.; Schirinzi, G. Enhanced Wiener Filter for Ultrasound image denoising. In Proceedings of the European Medical and Biological Engineering Conference Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, Tampere, Finland, 11–15 June 2017; pp. 65–68. [Google Scholar] [CrossRef]
- Loupas, T.; McDicken, W.; Allan, P.L. An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Trans. Circuits Syst. 1989, 36, 129–135. [Google Scholar] [CrossRef]
- Zhu, L.; Fu, C.W.; Brown, M.S.; Heng, P. A Non-local Low-Rank Framework for Ultrasound Speckle Reduction. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 493–501. [Google Scholar]
- Yu, Y.; Acton, S. Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 2002, 11, 1260–1270. [Google Scholar]
- Vazquez-Corral, J.; Bertalmío, M. Angular-Based Preprocessing for Image Denoising. IEEE Signal Process. Lett. 2018, 25, 219–223. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, Q.; Lou, S.; Hou, Y. Wavelet-Based Total Variation and Nonlocal Similarity Model for Image Denoising. IEEE Signal Process. Lett. 2017, 24, 877–881. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Guo, Z.; Wu, B.; Zhang, D. Multiplicative Noise Removal and Contrast Enhancement for SAR Images Based on a Total Fractional-Order Variation Model. Fractal Fract. 2023, 7, 329. [Google Scholar] [CrossRef]
- Bi, S.; Li, M.; Cai, G. Mixed Fractional-Order and High-Order Adaptive Image Denoising Algorithm Based on Weight Selection Function. Fractal Fract. 2023, 7, 566. [Google Scholar] [CrossRef]
- Song, Y.; Zhu, Y.; Du, X. Grouped Multi-Scale Network for Real-World Image Denoising. IEEE Signal Process. Lett. 2020, 27, 2124–2128. [Google Scholar] [CrossRef]
- Bai, Y.C.; Zhang, S.; Chen, M.; Pu, Y.F.; Zhou, J.L. A Fractional Total Variational CNN Approach for SAR Image Despeckling. In Intelligent Computing Methodologies, Proceedings of the 14th International Conference, ICIC 2018, Wuhan, China, 15–18 August 2018; Proceedings, Part III 14; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 431–442. [Google Scholar]
- Liang, J.; Liu, R. Stacked denoising autoencoder and dropout together to prevent overfitting in deep neural network. In Proceedings of the 2015 8th International Congress on Image and Signal Processing (CISP), Shenyang, China, 14–16 October 2015; pp. 697–701. [Google Scholar]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed]
- Anwar, S.; Barnes, N. Real Image Denoising With Feature Attention. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3155–3164. [Google Scholar]
- Sharif, S.; Naqvi, R.A.; Biswas, M. Learning medical image denoising with deep dynamic residual attention network. Mathematics 2020, 8, 2192. [Google Scholar] [CrossRef]
- Lan, Y.; Zhang, X. Real-Time Ultrasound Image Despeckling Using Mixed-Attention Mechanism Based Residual UNet. IEEE Access 2020, 8, 195327–195340. [Google Scholar] [CrossRef]
- Guo, Y.; Lu, Y.; Liu, R.W.; Zhu, F. Blind Image Despeckling Using Multi-Scale Attention-Guided Neural Network. IEEE Trans. Artif. Intell. 2023, 5, 205–216. [Google Scholar] [CrossRef]
- Pu, Y.F. Fractional-Order Euler-Lagrange Equation for Fractional-Order Variational Method: A Necessary Condition for Fractional-Order Fixed Boundary Optimization Problems in Signal Processing and Image Processing. IEEE Access 2016, 4, 10. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 21–23 September 2005; Volume 2, pp. 60–65. [Google Scholar] [CrossRef]
- Coupe, P.; Hellier, P.; Kervrann, C.; Barillot, C. Nonlocal Means-Based Speckle Filtering for Ultrasound Images. IEEE Trans. Image Process. 2009, 18, 2221–2229. [Google Scholar] [CrossRef]
- Jia, X.; Feng, X.; Wang, W. Rank constrained nuclear norm minimization with application to image denoising. Signal Process. 2016, 129, 1–11. [Google Scholar] [CrossRef]
- Tirer, T.; Giryes, R. Super-Resolution via Image-Adapted Denoising CNNs: Incorporating External and Internal Learning. IEEE Signal Process. Lett. 2019, 26, 1080–1084. [Google Scholar] [CrossRef]
- Wang, Y.; Song, X.; Chen, K. Channel and Space Attention Neural Network for Image Denoising. IEEE Signal Process. Lett. 2021, 28, 424–428. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Guided Image Filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Duman, E.A. An Edge Preserving Image Denoising Framework Based on Statistical Edge Detection and Bilateral Filter. Mehmet Akif Ersoy Üniversitesi Fen Bilim. EnstitüSü Derg. 2021, 12, 519–531. [Google Scholar] [CrossRef]
- Bai, J.; Feng, X.C. Fractional-Order Anisotropic Diffusion for Image Denoising. IEEE Trans. Image Process. 2007, 16, 2492–2502. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.F.; Zhou, J.L.; Yuan, X. Fractional differential mask: A fractional differential-based approach for multiscale texture enhancement. IEEE Trans. Image Process. 2010, 19, 491–511. [Google Scholar]
- Lysaker, M.; Osher, S.; Tai, X.C. Noise removal using smoothed normals and surface fitting. IEEE Trans. Image Process. 2004, 13, 1345–1357. [Google Scholar] [CrossRef]
- Chen, D.; Sun, S.; Zhang, C.; Chen, Y.; Xue, D. Fractional-order TV-L2 model for image denoising. Cent. Eur. J. Phys. 2013, 11, 1414–1422. [Google Scholar] [CrossRef]
- Podlubny, I.; Chechkin, A.; Skovranek, T.; Chen, Y.Q.; Jara, B.M.V. Matrix approach to discrete fractional calculus II: Partial fractional differential equations. J. Comput. Phys. 2008, 228, 3137–3153. [Google Scholar] [CrossRef]
- Kanopoulos, N.; Vasanthavada, N. Design of an image edge detection filter using the Sobel operator. IEEE J. Solid-State Circuits 1988, 23, 358–367. [Google Scholar] [CrossRef]
- Wang, L.; Pu, Y.F.; Liu, P.; Hao, Y. Multiscale hybrid method for speckle reduction of medical ultrasound images. Multimed. Tools Appl. 2023, 83, 55219–55234. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollar, P.; Zitnick, L. Microsoft COCO: Common Objects in Context. In Proceedings of the European Conference on Computer Vision, ECCV, Zurich, Switzerland, 6–12 September 2014. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Xiong, R.; Yang, Y.; He, D.; Zheng, K.; Zheng, S.; Xing, C.; Zhang, H.; Lan, Y.; Wang, L.; Liu, T. On Layer Normalization in the Transformer Architecture. In Proceedings of the 37th International Conference on Machine Learning, PMLR, Vienna, Austria, 12–18 July 2020. [Google Scholar]
- Wang, Y.; Solomon, J. Deep Closest Point: Learning Representations for Point Cloud Registration. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 3522–3531. [Google Scholar]
- Zhang, J.; Lin, G.; Wu, L.; Wang, C.; Cheng, Y. Wavelet and fast bilateral filter based de-speckling method for medical ultrasound images. Biomed. Signal Process. Control 2015, 18, 1–10. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wu, X.; Buades, A.; Li, X. Color demosaicking by local directional interpolation and nonlocal adaptive thresholding. J. Electron. Imaging 2011, 20, 023016. [Google Scholar]
- Franzen, R. Kodak Lossless True Color Image Suite. Available online: http://r0k.us/graphics/kodak (accessed on 12 September 2023).
- Roth, S.; Black, M. Fields of Experts: A framework for learning image priors. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 21–23 September 2005; Volume 2, pp. 860–867. [Google Scholar]
- Huang, J.B.; Singh, A.; Ahuja, N. Single image super-resolution from transformed self-exemplars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5197–5206. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
Mcmaster | Kodak24 | BSD68 | set12 | URBAN100 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Methods | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM |
SRAD [8] | 23.69 | 0.773 | 22.55 | 0.682 | 22.88 | 0.744 | 21.74 | 0.743 | 20.71 | 0.643 |
OBNLM [23] | 23.66 | 0.623 | 22.37 | 0.582 | 22.90 | 0.723 | 22.37 | 0.724 | 21.69 | 0.703 |
NLLRF [7] | 22.81 | 0.583 | 21.52 | 0.498 | 22.82 | 0.674 | 21.50 | 0.672 | 20.92 | 0.631 |
MHM [35] | 29.56 | 0.856 | 28.42 | 0.801 | 28.22 | 0.827 | 28.56 | 0.838 | 27.33 | 0.827 |
DnCNN [16] | 28.30 | 0.81 | 27.35 | 0.76 | 26.25 | 0.79 | 24.54 | 0.80 | 25.15 | 0.75 |
RIDNet [17] | 31.42 | 0.853 | 30.11 | 0.798 | 30.20 | 0.832 | 29.14 | 0.833 | 27.0 | 0.81 |
MSANN [20] | 29.53 | 0.851 | 28.02 | 0.791 | 28.11 | 0.823 | 28.53 | 0.835 | 27.21 | 0.825 |
DGGNet | 31.52 | 0.863 | 30.15 | 0.805 | 30.17 | 0.832 | 29.15 | 0.845 | 28.23 | 0.835 |
Method | SRAD [8] | OBNLM [23] | NLLRF [7] | MHM [35] | DnCNN [16] | RIDNet [17] | MSANN [20] | DGGNet |
---|---|---|---|---|---|---|---|---|
PSNR | 26.90 | 27.23 | 27.70 | 28.30 | 30.37 | 33.78 | 33.80 | 34.38 |
SSIM | 0.682 | 0.745 | 0.794 | 0.765 | 0.899 | 0.923 | 0.852 | 0.929 |
Unet | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Context block | ✕ | ✕ | ✓ | ✕ | ✕ | ✓ | ✓ | ✓ |
gradient branch | ✕ | ✓ | ✕ | ✕ | ✓ | ✕ | ✓ | ✓ |
Self-attention block | ✕ | ✕ | ✕ | ✓ | ✓ | ✓ | ✓ | ✓ |
fractional total variation | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✕ | ✓ |
PSNR | 33.16 | 33.27 | 33.43 | 33.81 | 33.83 | 34.03 | 34.09 | 34.38 |
SSIM | 0.919 | 0.920 | 0.922 | 0.923 | 0.924 | 0.927 | 0.928 | 0.929 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Li, J.; Pu, Y.-F.; Yin, H.; Liu, P. DGGNets: Deep Gradient-Guidance Networks for Speckle Noise Reduction. Fractal Fract. 2024, 8, 666. https://doi.org/10.3390/fractalfract8110666
Wang L, Li J, Pu Y-F, Yin H, Liu P. DGGNets: Deep Gradient-Guidance Networks for Speckle Noise Reduction. Fractal and Fractional. 2024; 8(11):666. https://doi.org/10.3390/fractalfract8110666
Chicago/Turabian StyleWang, Li, Jinkai Li, Yi-Fei Pu, Hao Yin, and Paul Liu. 2024. "DGGNets: Deep Gradient-Guidance Networks for Speckle Noise Reduction" Fractal and Fractional 8, no. 11: 666. https://doi.org/10.3390/fractalfract8110666
APA StyleWang, L., Li, J., Pu, Y. -F., Yin, H., & Liu, P. (2024). DGGNets: Deep Gradient-Guidance Networks for Speckle Noise Reduction. Fractal and Fractional, 8(11), 666. https://doi.org/10.3390/fractalfract8110666