Advanced Differential Equations with Canonical Operators: New Criteria for the Oscillation
Abstract
:1. Introduction
- (i)
- for
2. Some Auxiliary Lemmas
3. Main Results
4. Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977. [Google Scholar]
- Tarasov, V.E. Applications in Physics and Engineering of Fractional Calculus; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Clarendon Press: Oxford, UK, 1991. [Google Scholar]
- Agarwal, R.; Grace, S.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Grace, S.; Dzurina, J.; Jadlovska, I.; Li, T. On the oscillation of fourth order delay differential equations. Adv. Differ. Equations 2019, 2019, 118. [Google Scholar] [CrossRef]
- Xu, Z.; Xia, Y. Integral averaging technique and oscillation of certain even order delay differential equations. J. Math. Appl. Anal. 2004, 292, 238–246. [Google Scholar] [CrossRef]
- Bazighifan, O.; Dassios, I. Riccati Technique and Asymptotic Behavior of Fourth-Order Advanced Differential Equations. Mathematics 2020, 8, 590. [Google Scholar] [CrossRef]
- Alatwi, M.; Moaaz, O.; Albalawi, W.; Masood, F.; El-Metwally, H. Asymptotic and Oscillatory Analysis of Fourth-Order NonlinearDifferential Equations withp-Laplacian-like Operators and Neutral Delay Arguments. Mathematics 2024, 12, 470. [Google Scholar] [CrossRef]
- Bazighifan, O.; Ruggieri, M.; Scapellato, A. An Improved Criterion for the Oscillation of Fourth-Order Differential Equations. Mathematics 2020, 8, 610. [Google Scholar] [CrossRef]
- Nehari, Z. Oscillation criteria for second order linear differential equations. Trans. Amer. Math. Soc. 1957, 85, 428–445. [Google Scholar] [CrossRef]
- Philos, C. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delay. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
- Baculikova, B.; Dzurina, J.; Graef, J.R. On the oscillation of higher-order delay differential equations. Math. Slovaca 2012, 187, 387–400. [Google Scholar] [CrossRef]
- Alsharidi, A.K.; Muhib, A.; Elagan, S.K. Neutral Differential Equations of Higher-Order in Canonical Form: Oscillation Criteria. Mathematics 2023, 11, 3300. [Google Scholar] [CrossRef]
- Alsharidi, A.K.; Muhib, A. Investigating Oscillatory Behavior in Third-Order Neutral Differential Equations with Canonical Operators. Mathematics 2024, 12, 2488. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Suna, B.; Thandapani, E. On the oscillation of higher-order half-linear delay differential equations. Appl. Math. Lett. 2011, 24, 1618–1621. [Google Scholar] [CrossRef]
- Jadlovska, I. Iterative oscillation results for second-order differential equations with advanced argument. Electron. J. Diff. Equ. 2017, 2017, 1–11. [Google Scholar]
- Chatzarakis, G.E.; Grace, S.R.; Jadlovsk, I. A sharp oscillation criterion for second-order half-linear advanced differential equations. Acta Math. Hungar. 2021, 163, 552–562. [Google Scholar] [CrossRef]
- Baculikova, B. Oscillatory behavior of the second order functional differential equations. Appl. Math. Lett. 2017, 72, 35–41. [Google Scholar] [CrossRef]
- Alqahtani, Z.; Qaraad, B.; Almuneef, A.; Alharbi, F. Oscillatory Properties of Second-Order Differential Equations with Advanced Arguments in the Noncanonical Case. Symmetry 2024, 16, 1018. [Google Scholar] [CrossRef]
- Aldiaiji, M.; Qaraad, B.; Iambor, L.F.; Elabbasy, E.M. On the Asymptotic Behavior of Class of Third-Order Neutral Differential Equations with Symmetrical and Advanced Argument. Symmetry 2023, 15, 1165. [Google Scholar] [CrossRef]
- Bazighifan, O.; Almutairi, A.; Almarri, B.; Marin, M. An Oscillation Criterion of Nonlinear Differential Equations with Advanced Term. Symmetry 2021, 13, 843. [Google Scholar] [CrossRef]
- Al-Jaser, A.; Qaraad, B.; Alharbi, F.; Serra-Capizzano, S. New Monotonic Properties for Solutions of Odd-Order Advanced Nonlinear Differential Equations. Symmetry 2024, 16, 817. [Google Scholar] [CrossRef]
- Alqahtani, Z.; Qaraad, B.; Almuneef, A.; Ramos, H. Asymptotic and Oscillatory Analysis of Second-Order Differential Equations with Distributed Deviating Arguments. Mathematics 2024, 12, 3542. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, Y.; Xiao, J. Oscillation of Second Order Nonlinear Neutral Differential Equations. Mathematics 2022, 10, 2739. [Google Scholar] [CrossRef]
- Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. New results for oscillatory behavior of even-order half-linear delay differential equations. Appl. Math. Lett. 2013, 26, 179–183. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Saker, S. Oscillation of fourth-order delay differential equations. J. Math. Sci. 2014, 201, 296–308. [Google Scholar] [CrossRef]
- Bazighifan, O. On the Oscillation of Certain Fourth-Order Differential Equations with p-Laplacian Like Operator. Appl. Math. Comput. 2020, 386, 125475. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Q.; Yu, Y. Oscillation of even-order half-linear functional differential equations with damping. Comput.Math. Appl. 2011, 61, 2191–2196. [Google Scholar] [CrossRef]
- Bazighifan, O.; Abdeljawad, T. Improved Approach for Studying Oscillatory Properties of Fourth-Order Advanced Differential Equations with p-Laplacian Like Operator. Mathematics 2020, 8, 656. [Google Scholar] [CrossRef]
- Li, T.; Baculikova, B.; Dzurina, J.; Zhang, C. Oscillation of fourth order neutral differential equations with p-Laplacian like operators. Bound. Value Probl. 2014, 56, 41–58. [Google Scholar] [CrossRef]
- Fite, W.B. Properties of the solutions of certain functional-differential equations. Trans. Amer. Math. Soc. 1921, 22, 311–319. [Google Scholar]
- Hassan, T.S. Kamenev-type oscillation criteria for second order nonlinear dynamic equations on time scales. Appl. Math. Comput. 2011, 217, 5285–5297. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Zhang, C.; Li, T. New Kamenev-type oscillation criteria for second-order nonlinear advanced dynamic equations. Appl. Math. Comput. 2013, 225, 822–828. [Google Scholar] [CrossRef]
- Dzurina, J. Oscillation of second order differential equations with advanced argument, Math. Slovaca 1995, 45, 263–268. [Google Scholar]
- Chatzarakis, G.E.; Dzurina, J.; Jadlovska, I. New oscillation criteria for second-order half-linear advanced differential equations. Appl. Math. Comput. 2019, 347, 404–416. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. Chenghui. Even-order half-linear advanced differential equations: Improved criteria in oscillatory and asymptotic properties. Appl. Math. Comput. 2015, 266, 481–490. [Google Scholar]
- Agarwal, R.P.; Grace, S.R. Oscillation theorems for certain functional differential equations of higher order. Math. Comput. Model. 2004, 39, 1185–1194. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation criteria for certain nth order differential equations with deviating arguments. J. Math. Anal. Appl. 2001, 262, 601–622. [Google Scholar] [CrossRef]
- Bazighifan, O. An Approach for Studying Asymptotic Properties of Solutions of Neutral Differential Equations. Symmetry 2020, 12, 555. [Google Scholar] [CrossRef]
- Bazighifan, O.; Alotaibi, H.; Mousa, A.A.A. Neutral Delay Differential Equations: Oscillation Conditions for the Solutions. Symmetry 2021, 13, 101. [Google Scholar] [CrossRef]
- Agarwal, R.; Shieh, S.L.; Yeh, C.C. Oscillation criteria for second order retarde ddifferential equations. Math. Comput. Model. 1997, 26, 1–11. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazighifan, O.; Alshammari, N.; Al-Ghafri, K.S.; Iambor, L.F. Advanced Differential Equations with Canonical Operators: New Criteria for the Oscillation. Fractal Fract. 2024, 8, 670. https://doi.org/10.3390/fractalfract8110670
Bazighifan O, Alshammari N, Al-Ghafri KS, Iambor LF. Advanced Differential Equations with Canonical Operators: New Criteria for the Oscillation. Fractal and Fractional. 2024; 8(11):670. https://doi.org/10.3390/fractalfract8110670
Chicago/Turabian StyleBazighifan, Omar, Nawa Alshammari, Khalil S. Al-Ghafri, and Loredana Florentina Iambor. 2024. "Advanced Differential Equations with Canonical Operators: New Criteria for the Oscillation" Fractal and Fractional 8, no. 11: 670. https://doi.org/10.3390/fractalfract8110670
APA StyleBazighifan, O., Alshammari, N., Al-Ghafri, K. S., & Iambor, L. F. (2024). Advanced Differential Equations with Canonical Operators: New Criteria for the Oscillation. Fractal and Fractional, 8(11), 670. https://doi.org/10.3390/fractalfract8110670