Investigating the Dynamics of a Unidirectional Wave Model: Soliton Solutions, Bifurcation, and Chaos Analysis
Abstract
:1. Introduction
2. Description of Modified Sardar Sub-Equation Method
- Step 1.
- Utilize the transformation of the traveling wave solution
- Step 2.
- The given form describes the general solution of Equation (3), as per the method.
- Cluster 1.
- When , we acquire
- Cluster 2.
- For constants , when and , we acquire
- Cluster 3.
- For constants , when , we acquire
- Cluster 4.
- When are constants, we acquire
- Cluster 5.
- When and and are constants, we acquire
- Cluster 6.
- When we acquire
- Cluster 7.
- When , we acquire
- Step 3.
- Step 4.
- Collect all the coefficients with the same power and set them to zero; then, we acquire the algebraic system of the equation for , where .
- Step 5.
3. Dynamical System Governed by Proposed Equation
3.1. Analysis and Graphical Visualization of Bifurcation, Chaos, and Other Behaviors of Equation (9)
3.1.1. Analysis of Bifurcations
- will be a saddle point, when ;
- will be a center point, when ;
- will be a cuspid point, when .
- Case I:
- andBy choosing particular values for the parameters in the form , we observe that there is a single real stationary point, which is , as visualized in Figure 1a. Clearly, it can be seen that is a saddle point.
- Case II:
- andUsing the values of the parameters as , we find that there exist three stationary points , and , out of which behaves as a cuspid point, as demonstrated in Figure 1b. Moreover, and are saddle points.
- Case III:
- andBy selecting the parameters , we find that there exist three non-complex stationary points, , and , as shown in Figure 1c. Obviously, one can see that the stationary point acts as a cuspid point, with and corresponding to saddle points.
- Case IV:
- andBy selecting the parameters , we recognize that the non-complex real stationary point is , as depicted in Figure 1d. Evidently, is a center point.
- Case IV:
- andBy selecting the parameters , we obtain three real stationary points, which are , and , as presented in Figure 1e. Obviously, is a saddle, is a cuspid and is a center point.
3.1.2. Chaos in the Proposed System
3.1.3. Effects of Parameters on the Chaotic Flow of the System
3.1.4. Sensitivity Analysis
4. Mathematical Analysis
5. Physical Interpretations of the Solutions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malik, S.; Hashemi, M.S.; Kumar, S.; Rezazadeh, H.; Mahmoud, W.; Osman, M.S. Application of new Kudryashov method to various nonlinear partial differential equations. Opt. Quantum Electron. 2023, 55, 8. [Google Scholar] [CrossRef]
- Jagtap, A.D.; Karniadakis, G.E. Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. Commun. Comput. Phys. 2020, 28, 2002–2041. [Google Scholar] [CrossRef]
- Khan, H.; Shah, R.; Kumam, P.; Baleanu, D.; Arif, M. Laplace decomposition for solving nonlinear system of fractional order partial differential equations. Adv. Differ. Equ. 2020, 2020, 375. [Google Scholar] [CrossRef]
- Ali, M.R.; Khattab, M.A.; Mabrouk, S.M. Optical soliton solutions for the integrable Lakshmanan-Porsezian-Daniel equation via the inverse scattering transformation method with applications. Optik 2023, 272, 170256. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 1974, 53, 249–315. [Google Scholar] [CrossRef]
- An, L.; Chen, Y.; Ling, L. Inverse scattering transforms for the nonlocal Hirota–Maxwell–Bloch system. J. Phys. Math. Theor. 2023, 56, 115201. [Google Scholar] [CrossRef]
- Ahmed, K.K.; Badra, N.M.; Ahmed, H.M.; Rabie, W.B. Soliton solutions of generalized Kundu-Eckhaus equation with an extra-dispersion via improved modified extended tanh-function technique. Opt. Quantum Electron. 2023, 55, 299. [Google Scholar] [CrossRef]
- Muhammad, T.; Hamoud, A.A.; Emadifar, H.; Hamasalh, F.K.; Azizi, H.; Khademi, M. Traveling wave solutions to the Boussinesq equation via Sardar sub-equation technique. AIMS Math. 2022, 7, 11134–11149. [Google Scholar]
- Tatari, M.; Dehghan, M.; Razzaghi, M. Application of the Adomian decomposition method for the Fokker–Planck equation. Math. Comput. Model. 2007, 45, 639–650. [Google Scholar] [CrossRef]
- He, J.-H. Variational iteration method–a kind of non-linear analytical technique: Some examples. Int. J. Non-Linear Mech. 1999, 34, 699–708. [Google Scholar] [CrossRef]
- Ahmad, H.; Alam, M.N.; Rahim, M.A.; Alotaibi, M.F.; Omri, M. The unified technique for the nonlinear time-fractional model with the beta-derivative. Results Phys. 2021, 29, 104785. [Google Scholar] [CrossRef]
- Yuan, R.-r.; Shi, Y.; Zhao, S.-l.; Wang, W.-z. The mKdV equation under the Gaussian white noise and Wiener process: Darboux transformation and stochastic soliton solutions. Chaos Solitons Fractals 2024, 181, 114709. [Google Scholar] [CrossRef]
- Yuan, F.; Ghanbari, B. A study of interaction soliton solutions for the (2+1)-dimensional Hirota–Satsuma–Ito equation. Nonlinear Dyn. 2024, 112, 2883–2891. [Google Scholar] [CrossRef]
- Saber, H.; Alqarni, F.A.; Aldwoah, K.A.; Hashim, H.E.; Saifullah, S.; Hleili, M. Novel hybrid waves solutions of Sawada–Kotera like integrable model arising in fluid mechanics. Alex. Eng. J. 2024, 104, 723–744. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Davodi, A.G.; Gholami, D. Combined formal periodic wave-like and soliton-like solutions of the conformable Schrödinger-KdV equation using the G′G2-expansion technique. Results Phys. 2023, 47, 106352. [Google Scholar] [CrossRef]
- Moumen, A.; Aldwoah, K.A.; Suhail, M.; Kamel, A.; Saber, H.; Hleili, M.; Saifullah, S. Investigation of more solitary waves solutions of the stochastics Benjamin-Bona-Mahony equation under beta operator. AIMS Math. 2024, 9, 27403–27417. [Google Scholar] [CrossRef]
- Mathanaranjan, T. Optical soliton, linear stability analysis and conservation laws via multipliers to the integrable Kuralay equation. Optik 2023, 290, 171266. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Hussain, Z.; Li, Z.; Abbas, T.; Tlili, I. Bifurcation analysis and multi-stability of chirped form optical solitons with phase portrait. Results Eng. 2024, 21, 101861. [Google Scholar] [CrossRef]
- Rani, A.; Shakeel, M.; Alaoui, M.K.; Zidan, A.M.; Shah, N.A.; Junsawang, P. Application of the Exp-Ψ(ξ)-Expansion Method to Find the Soliton Solutions in Biomembranes and Nerves. Mathematics 2022, 10, 3372. [Google Scholar] [CrossRef]
- Ma, W.; Bilige, S. Novel interaction solutions to the (3+ 1)-dimensional Hirota bilinear equation by bilinear neural network method. Mod. Phys. Lett. B 2024, 38, 2450240. [Google Scholar] [CrossRef]
- Zhang, J.; Manafian, J.; Raut, S.; Roy, S.; Mahmoud, K.H.; Alsubaie, A.S.A. Study of two soliton and shock wave structures by weighted residual method and Hirota bilinear approach. Nonlinear Dyn. 2024, 112, 12375–12391. [Google Scholar] [CrossRef]
- Wang, K.-J.; Shi, F.; Xu, P.; Li, S. Non-singular complexiton, singular complexiton and complex multiple soliton solutions to the (3+ 1)-dimensional nonlinear evolution equation. Math. Methods Appl. Sci. 2024, 47, 6946–6961. [Google Scholar] [CrossRef]
- Hamza, A.E.; Osman, O.; Sarwar, M.U.; Aldwoah, K.; Saber, H.; Hleili, M. Exploring Solitons Solutions of a (3+1)-Dimensional Fractional mKdV-ZK Equation. Fractal Fract. 2024, 8, 498. [Google Scholar] [CrossRef]
- Hamza, A.E.; Suhail, M.; Alsulami, A.; Mustafa, A.; Aldwoah, K.; Saber, H. Exploring Soliton Solutions and Chaotic Dynamics in the (3+1)-Dimensional Wazwaz–Benjamin–Bona–Mahony Equation: A Generalized Rational Exponential Function Approach. Fractal Fract. 2024, 8, 592. [Google Scholar] [CrossRef]
- Wang, K.-J. Soliton molecules, Y-type soliton and complex multiple soliton solutions to the extended (3+1)-dimensional Jimbo-Miwa equation. Phys. Scr. 2024, 99, 015254. [Google Scholar] [CrossRef]
- Yasmin, H.; Alshehry, A.S.; Ganie, A.H.; Mahnashi, A.M.; Shah, R. Perturbed Gerdjikov–Ivanov equation: Soliton solutions via Backlund transformation. Optik 2024, 298, 171576. [Google Scholar] [CrossRef]
- Wazwaz, A.M.; Alhejaili, W.; El-Tantawy, S.A. On the Painlevé integrability and nonlinear structures to a (3+1)-dimensional Boussinesq-type equation in fluid mediums: Lumps and multiple soliton/shock solutions. Phys. Fluids 2024, 36, 033116. [Google Scholar] [CrossRef]
- Abbas, N.; Bibi, F.; Hussain, A.; Ibrahim, T.F.; Dawood, A.A.; Birkea, F.M.O.; Hassan, A.M. Optimal system, invariant solutions and dynamics of the solitons for the Wazwaz Benjamin Bona Mahony equation. Alex. Eng. J. 2024, 91, 429–441. [Google Scholar] [CrossRef]
- Kawser, M.A.; Akbar, M.A.; Khan, M.A.; Ghazwani, H.A. Exact soliton solutions and the significance of time-dependent coefficients in the Boussinesq equation: Theory and application in mathematical physics. Sci. Rep. 2024, 14, 762. [Google Scholar] [CrossRef]
- Sabi’u, J.; Shaayesteh, M.T.; Taheri, A.; Rezazadeh, H.; Inc, M.; Akgül, A. New exact solitary wave solutions of the generalized (3+1)-dimensional nonlinear wave equation in liquid with gas bubbles via extended auxiliary equation method. Opt. Quantum Electron. 2023, 55, 586. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Sabi’u, J.; Jena, R.M.; Chakraverty, S. New optical soliton solutions for Triki–Biswas model by new extended direct algebraic method. Mod. Phys. Lett. B 2020, 34, 2150023. [Google Scholar] [CrossRef]
- Alqudah, M.; AlMheidat, M.; Alqarni, M.M.; Mahmoud, E.E.; Ahmad, S. Strange attractors, nonlinear dynamics and abundant novel soliton solutions of the Akbota equation in Heisenberg ferromagnets. Chaos Solitons Fractals 2024, 189, 115659. [Google Scholar] [CrossRef]
- Aldwoah, K.; Ahmad, S.; Alqarni, F.; Younis, J.; Hashim, H.E.; Hleili, M. Invariant solutions, lie symmetry analysis, bifurcations and nonlinear dynamics of the Kraenkel-Manna-Merle system with and without damping effect. Sci. Rep. 2024, 14, 26315. [Google Scholar] [CrossRef] [PubMed]
- Almheidat, M.; Alqudah, M.; Alderremy, A.A.; Elamin, M.; Mahmoud, E.E.; Ahmad, S. Lie-bäcklund symmetry, soliton solutions, chaotic structure and its characteristics of the extended (3+1) dimensional Kairat-II model. Nonlinear Dyn. 2024, 1–17. [Google Scholar] [CrossRef]
- Khan, A.; Saifullah, S.; Ahmad, S.; Khan, M.A.; Rahman, M.u. Dynamical properties and new optical soliton solutions of a generalized nonlinear Schrödinger equation. Eur. Phys. J. Plus 2023, 138, 1059. [Google Scholar] [CrossRef]
- Wazwaz, A.-M. A Hamiltonian equation produces a variety of Painlevé integrable equations: Solutions of distinct physical structures. Int. J. Numer. Methods Heat Fluid Flow 2024, 34, 1730–1751. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alraqad, T.; Suhail, M.; Saber, H.; Aldwoah, K.; Eljaneid, N.; Alsulami, A.; Muflh, B. Investigating the Dynamics of a Unidirectional Wave Model: Soliton Solutions, Bifurcation, and Chaos Analysis. Fractal Fract. 2024, 8, 672. https://doi.org/10.3390/fractalfract8110672
Alraqad T, Suhail M, Saber H, Aldwoah K, Eljaneid N, Alsulami A, Muflh B. Investigating the Dynamics of a Unidirectional Wave Model: Soliton Solutions, Bifurcation, and Chaos Analysis. Fractal and Fractional. 2024; 8(11):672. https://doi.org/10.3390/fractalfract8110672
Chicago/Turabian StyleAlraqad, Tariq, Muntasir Suhail, Hicham Saber, Khaled Aldwoah, Nidal Eljaneid, Amer Alsulami, and Blgys Muflh. 2024. "Investigating the Dynamics of a Unidirectional Wave Model: Soliton Solutions, Bifurcation, and Chaos Analysis" Fractal and Fractional 8, no. 11: 672. https://doi.org/10.3390/fractalfract8110672
APA StyleAlraqad, T., Suhail, M., Saber, H., Aldwoah, K., Eljaneid, N., Alsulami, A., & Muflh, B. (2024). Investigating the Dynamics of a Unidirectional Wave Model: Soliton Solutions, Bifurcation, and Chaos Analysis. Fractal and Fractional, 8(11), 672. https://doi.org/10.3390/fractalfract8110672