Properties and Applications of Symmetric Quantum Calculus
Abstract
:1. Introduction
2. Preliminaries
- 1.
- .
- 2.
- .
- 3.
- .
- 1.
- .
- 2.
- .
3. Main Findings
- 1.
- .
- 2.
- .or,.
- 3.
- ,where .
- 1.
- .
- 2.
- .
- 3.
- 4.
- 5.
- .
- 1.
- .
- 2.
- .
- 3.
- 4.
- 5.
- .
- 6.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Quantum integral inequalities for convex functions. J. Math. Inequal. 2015, 9, 781–793. [Google Scholar] [CrossRef]
- Alp, N.; Sarıkaya, M.Z.; Kunt, M.; İşcan, İ. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef]
- Bin-Mohsin, B.; Javed, M.Z.; Awan, M.U.; Khan, A.G.; Cesarano, C.; Noor, M.A. Exploration of Quantum Milne-Mercer-Type Inequalities with Applications. Symmetry 2023, 15, 1096. [Google Scholar] [CrossRef]
- Kunt, M.; Baidar, A.W.; Sanli, Z. Some Quantum Integral Inequalities Based on Left-Right Quantum Integrals. Turk. J. Sci. Technol. 2022, 17, 343–356. [Google Scholar] [CrossRef]
- Nwaeze, E.R.; Tameru, A.M. New parameterized quantum integral inequalities via η-quasiconvexity. Adv. Differ. Equ. 2019, 2019, 425. [Google Scholar] [CrossRef]
- Asawasamrit, S.; Sudprasert, C.; Ntouyas, S.K.; Tariboon, J. Some results on quantum Hahn integral inequalities. J. Inequalities Appl. 2019, 2019, 154. [Google Scholar] [CrossRef]
- Kunt, M.; Kashuri, A.; Du, T.; Baidar, A.W. Quantum Montgomery identity and quantum estimates of Ostrowski type inequalities. AIMS Math 2020, 5, 5439–5457. [Google Scholar] [CrossRef]
- Kalsoom, H.; Vivas-Cortez, M. ()-Ostrowski-Type Integral Inequalities Involving Property of Generalized Higher-Order Strongly n-Polynomial Preinvexity. Symmetry 2022, 14, 717. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Feckan, M.; Khan, S. A new version of q-Hermite-Hadamard’s midpoint and trapezoid type inequalities for convex functions. J. Math. Slovaca 2023, 73, 369–386. [Google Scholar] [CrossRef]
- Jhanthanam, S.; Tariboon, J.; Ntouyas, S.K.; Nonlaopon, K. On q-Hermite-Hadamard inequalities for differentiable convex functions. Mathematics 2019, 7, 632. [Google Scholar] [CrossRef]
- Awan, M.U.; Javed, M.Z.; Slimane, I.; Kashuri, A.; Cesarano, C.; Nonlaopon, K. ()-Trapezium-Like Inequalities Involving Twice Differentiable Generalized m-Convex Functions and Applications. Fractal Fract. 2022, 6, 435. [Google Scholar] [CrossRef]
- Du, T.S.; Luo, C.Y.; Yu, B. Certain quantum estimates on the parameterized integral inequalities and their applications. J. Math. Inequal 2021, 15, 201–228. [Google Scholar] [CrossRef]
- Khan, M.A.; Mohammad, N.; Nwaeze, E.R.; Chu, Y.M. Quantum Hermite-Hadamard inequality by means of A Green function. Adv. Differ. Equ. 2020, 2020, 99. [Google Scholar] [CrossRef]
- Saleh, W.; Meftah, B.; Lakhdari, A. Quantum dual Simpson type inequalities for q-differentiable convex functions. Int. J. Nonlinear Anal. Appl. 2023, 14, 63–76. [Google Scholar]
- Bin-Mohsin, B.; Javed, M.Z.; Awan, M.U.; Budak, H.; Kara, H.; Noor, M.A. Quantum Integral Inequalities in the Setting of Majorization Theory and Applications. Symmetry 2022, 14, 1925. [Google Scholar] [CrossRef]
- Alomari, M. q-Bernoulli inequality. Turk. J. Sci. 2018, 3, 32–39. [Google Scholar]
- Alp, N.; Sarikaya, M.Z. q-Inequalities on quantum integral. Malaya J. Mat. 2020, 8, 2035–2044. [Google Scholar] [CrossRef] [PubMed]
- Nosheen, A.; Ijaz, S.; Khan, K.A.; Awan, K.M.; Albahar, M.A.; Thanoon, M. Some q-Symmetric Integral Inequalities Involving s-Convex Functions. Symmetry 2023, 15, 1169. [Google Scholar] [CrossRef]
- Mehmet, K.U.N.T.; Aljasem, M. Fractional quantum Hermite-Hadamard type inequalities. Konuralp J. Math. 2020, 8, 122–136. [Google Scholar]
- Budak, H.; Ali, M.A.; Tarhanaci, M. Some new quantum Hermite–Hadamard-like inequalities for coordinated convex functions. J. Optim. Theory Appl. 2020, 186, 899–910. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Abbas, M.; Chu, Y.M. Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second -derivatives. Adv. Differ. Equ. 2021, 2021, 7. [Google Scholar] [CrossRef]
- Niculescu, C.; Persson, L.E. Convex Functions and Their Applications; Springer: New York, NY, USA, 2006; Volume 23. [Google Scholar]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite–Hadamard Inequalities and Applications; RGMIA; Victoria University: Melbourne, Australia, 2000. [Google Scholar]
- Peajcariaac, J.E.; Tong, Y.L. Convex Functions, Partial Orderings, and Statistical Applications; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Akdemir, A.O.; Butt, S.I.; Nadeem, M.; Ragusa, M.A. New general variants of Chebyshev type inequalities via generalized fractional integral operators. Mathematics 2021, 9, 122. [Google Scholar] [CrossRef]
- Kac, V.G.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002; Volume 113. [Google Scholar]
- BilalL, M.; Iqbal, A.; Rastogi, S. Quantum symmetric analogues of various integral inequalities over finite intervals. J. Math. Inequalities 2023, 17, 615–627. [Google Scholar] [CrossRef]
- Zhao, W.; Rexma Sherine, V.; Gerly, T.G.; Britto Antony Xavier, G.; Julietraja, K.; Chellamani, P. Symmetric Difference Operator in Quantum Calculus. Symmetry 2022, 14, 1317. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivas-Cortez, M.; Javed, M.Z.; Awan, M.U.; Dragomir, S.S.; Zidan, A.M. Properties and Applications of Symmetric Quantum Calculus. Fractal Fract. 2024, 8, 107. https://doi.org/10.3390/fractalfract8020107
Vivas-Cortez M, Javed MZ, Awan MU, Dragomir SS, Zidan AM. Properties and Applications of Symmetric Quantum Calculus. Fractal and Fractional. 2024; 8(2):107. https://doi.org/10.3390/fractalfract8020107
Chicago/Turabian StyleVivas-Cortez, Miguel, Muhammad Zakria Javed, Muhammad Uzair Awan, Silvestru Sever Dragomir, and Ahmed M. Zidan. 2024. "Properties and Applications of Symmetric Quantum Calculus" Fractal and Fractional 8, no. 2: 107. https://doi.org/10.3390/fractalfract8020107
APA StyleVivas-Cortez, M., Javed, M. Z., Awan, M. U., Dragomir, S. S., & Zidan, A. M. (2024). Properties and Applications of Symmetric Quantum Calculus. Fractal and Fractional, 8(2), 107. https://doi.org/10.3390/fractalfract8020107