Topological Properties of Polymeric Networks Modelled by Generalized Sierpiński Graphs
Abstract
:1. Introduction
- , if .
- but .
- and , whenever .
2. Discussion and Main Results
- 1.
- .
- 2.
- .
- 3.
- .
- 4.
- .
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bondy, A.; Murty, U.S.R. Graph Theory; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Bollobàs, B.; Erdös, P. Graphs of extremal weights. Ars Comb. 1998, 50, 225–233. [Google Scholar] [CrossRef]
- Altassan, A.; Imran, M.; Rather, B.A. On ABC energy and its application to anticancer drugs. Aims Math. 2023, 8, 21668–21682. [Google Scholar] [CrossRef]
- Altassan, A.; Rather, B.A.; Imran, M. Inverse sum indeg index (energy) with application as anticancer drugs. Mathematics 2022, 10, 4749. [Google Scholar] [CrossRef]
- Borovićanin, B.; Das, K.C.; Furtula, B.; Gutman, I. Bounds for Zagreb indices. MATCH Commun. Math. Comput. Chem. 2017, 78, 17–100. [Google Scholar]
- Deng, H. A unified approach to the extremal Zagreb indices for trees unicyclic graphs and bicyclic graphs. MATCH Commun. Math. Comput. Chem. 2007, 57, 597–616. [Google Scholar]
- Li, X.; Shi, Y. A survey on the Randić index. MATCH Commun. Math. Comput. Chem. 2008, 59, 127–156. [Google Scholar]
- Gutman, I.; Furtula, B.; Elphick, C. Three new/old node-degree-based topological indices. MATCH Commun. Math. Comput. Chem. 2014, 72, 617–632. [Google Scholar]
- Zhou, B.; Trinajstić, N. On a novel connectivity index. J. Math. Chem. 2009, 46, 1252–1270. [Google Scholar] [CrossRef]
- Du, Z.; Zhou, B.; Trinajstić, N. Minimum general sum-connectivity index of unicyclic graphs. J. Math. Chem. 2010, 48, 697–703. [Google Scholar] [CrossRef]
- Gao, W.; Jamil, M.K.; Javed, A.; Farahani, M.R.; Wang, S.; Liu, J.B. Sharp bounds of the hyper-Zagreb index on acyclic, unicyclic and bicyclic graphs. Discret. Dyn. Nat. Soc. 2017, 2017, 6079450. [Google Scholar] [CrossRef]
- Jamil, M.K.; Tomescu, I. General sum-connectivity index of trees and unicyclic graphs with fixed maximum degree. Proc. Rom. Acad. Ser. A Rom. Acad. 2019, 20, 11–17. [Google Scholar]
- Wang, S.; Gao, W.; Jamil, M.K.; Farahani, M.R.; Liu, J.B. Bounds of Zagreb indices and hyper Zagreb indices. Math. Rep. 2019, 21, 93–102. [Google Scholar]
- Criado, R.; Flores, J.; del Amo, A.G.; Romance, M. Centralities of a network and its line graph: An analytical comparison by means of their irregularity. Int. J. Comput. Math. 2014, 91, 304–314. [Google Scholar] [CrossRef]
- Albertson, M.; Berman, D. Ramsey graphs without repeated degrees. Congr. Numer. 1991, 83, 91–96. [Google Scholar]
- Furtula, B.; Gutman, I. A forgotten topological index. J. Math. Chem. 2015, 53, 1184–1190. [Google Scholar] [CrossRef]
- Fath–Tabar, G.H.; Gutman, I.; Nasiri, R. Extremely irregular trees. Bull. Acad. Serbe Sci. Arts Cl. Sci. Math. Natur. 2013, 145, 1–8. [Google Scholar]
- Fath–Tabar, G. Old and new Zagreb indices of graphs. MATCH Commun. Math. Comput. Chem. 2011, 65, 79–84. [Google Scholar]
- Furtula, B.; Gutman, I.; Dehmer, M. On structure–sensitivity of degree–based topological indices. Appl. Math. Comput. 2013, 219, 8973–8978. [Google Scholar] [CrossRef]
- Réti, T.; Sharafdini, R.; Kiss, A.D.; Haghbin, H. Graph irregularity indices used as molecular descriptor in QSPR studies. MATCH Commun. Math. Comput. Chem. 2018, 79, 509–524. [Google Scholar]
- Pirzada, S.; Rather, B.A.; Aouchiche, M. On eigenvalues and energy of geometric-arithmetic matrix of graphs. Mediterr. J. Math. 2022, 19, 115. [Google Scholar] [CrossRef]
- Gutman, I. Irregularity of molecular graphs. Kragujev. J. Sci. 2016, 18, 71–81. [Google Scholar] [CrossRef]
- Klavžar, S.; Milutinović, U. Graphs S(n,l) and a variant of the Tower of Hanoi problem. Czechoslov. Math. J. 1997, 47, 95–104. [Google Scholar] [CrossRef]
- Gravier, S.; Kovše, M.; Parreau, A. Generalized Sierpiński graphs. In EuroComb 2011 (Poster); Rényi Institute: Budapest, Hungary, 2011. [Google Scholar]
- Javaid, I.; Benish, H.; Imran, M.; Khan, A.; Ullah, Z. On some bounds of the topological indices of generalized Sierpiński and extended Sierpiński graphs. J. Inequalities Appl. 2019, 37. [Google Scholar] [CrossRef]
- Estrada-Moreno, A.; Rodríguez-Velázques, J.A. On the general Randić index of polymeric networks modelled by generalized Sierpiński graphs. Discret. Appl. Math. 2018, 263, 140–151. [Google Scholar] [CrossRef]
- Camarda, K.V.; Maranas, C.D. Optimization in polymer design using connectivity indices. Ind. Eng. Chem. Res. 1999, 38, 1884–1892. [Google Scholar] [CrossRef]
- Zhu, Y.; Chang, R.; Wei, X. The harmonic index of bicyclic graphs. Ars Combin. 2013, 110, 97–104. [Google Scholar]
- Bingjun, L.; Weijun, L. The smallest Randić index for trees. Proc. Indian Acad. Sci. Math. Sci. 2013, 123, 167–175. [Google Scholar] [CrossRef]
- Li, X.; Shi, Y.; Xu, T. Unicyclic graphs with maximum general Randić index for γ > 0. MATCH Commun. Math. Comput. Chem. 2006, 56, 557–570. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altassan, A.; Imran, M. Topological Properties of Polymeric Networks Modelled by Generalized Sierpiński Graphs. Fractal Fract. 2024, 8, 123. https://doi.org/10.3390/fractalfract8020123
Altassan A, Imran M. Topological Properties of Polymeric Networks Modelled by Generalized Sierpiński Graphs. Fractal and Fractional. 2024; 8(2):123. https://doi.org/10.3390/fractalfract8020123
Chicago/Turabian StyleAltassan, Alaa, and Muhammad Imran. 2024. "Topological Properties of Polymeric Networks Modelled by Generalized Sierpiński Graphs" Fractal and Fractional 8, no. 2: 123. https://doi.org/10.3390/fractalfract8020123
APA StyleAltassan, A., & Imran, M. (2024). Topological Properties of Polymeric Networks Modelled by Generalized Sierpiński Graphs. Fractal and Fractional, 8(2), 123. https://doi.org/10.3390/fractalfract8020123