Fast Encryption Algorithm Based on Chaotic System and Cyclic Shift in Integer Wavelet Domain
Abstract
:1. Introduction
- (1)
- The encryption algorithm is proposed based on integer wavelet transform, chaotic system, and cyclic shift. The use of integer wavelet transform and cyclic shift not only guarantees the effect of encryption, but also improves the efficiency of encryption.
- (2)
- The hyper-chaotic systems with high unpredictability are used for image scrambling and diffusion, which make the algorithm resistant to various types of statistical attacks.
- (3)
- The initial value of the hyper-chaotic system is generated by SHA256 and user definition, which greatly expands the key space and makes the algorithm very sensitive to the key.
- (4)
- Experimental results show that the proposed algorithm can resist statistical attacks and differential attacks well, and has a large enough key space and strong key sensitivity and security.
2. Background Theory
2.1. Integer Wavelet Transform
2.2. Chen Hyper-Chaotic System
2.3. Piecewise Linear Chaotic Map (PWLCM)
3. Results
3.1. The Generation of Key
3.2. The Process of Permutation
3.3. The Process of Diffusion Based on Cyclic Shift
4. Simulation Results and Security Analysis
4.1. Encryption and Decryption Results
4.2. Key Space Analysis
4.3. Statistical Analysis
4.3.1. Histogram Analysis
4.3.2. Correlation Coefficient Analysis
4.3.3. Information Entropy Analysis
Image | Entropy | |
---|---|---|
Plaintext | Ciphertext | |
Man | 7.1926 | 7.9992 |
Zelda | 7.2668 | 7.9992 |
Einstein | 6.8667 | 7.9992 |
Lena | 7.4455 | 7.9994 |
Mandrill | 7.3899 | 7.9991 |
Bridge | 5.7056 | 7.9993 |
Crowd | 7.4842 | 7.9994 |
Boat | 7.1914 | 7.9994 |
Peppers | 7.5936 | 7.9993 |
4.4. Key Sensitivity Analysis
4.5. Differential Attack Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, N.; Wang, Y.; Gong, L. Novel optical image encryption scheme based on fractional mellin transform. Opt. Commun. 2011, 284, 3234–3242. [Google Scholar] [CrossRef]
- Wei, D.; Li, Y. Convolution and multichannel sampling for the offset linear canonical transform and their applications. IEEE Trans. Signal Process. 2019, 67, 6009–6024. [Google Scholar] [CrossRef]
- Wei, D.; Wang, R.; Li, Y.-M. Random discrete linear canonical transform. J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 2016, 33, 2470–2476. [Google Scholar] [CrossRef] [PubMed]
- Nezhad, S.Y.D.; Safdarian, N.; Zadeh, S.A.H. New method for fingerprint images encryption using DNA sequence and chaotic tent map. Optik 2020, 224, 165661. [Google Scholar] [CrossRef]
- Wei, D.; Jiang, M.; Deng, Y. A secure image encryption algorithm based on hyper-chaotic and bit-level permutation. Expert Syst. Appl. 2022, 213, 119074. [Google Scholar] [CrossRef]
- Wei, D.; Jiang, M. A fast image encryption algorithm based on parallel compressive sensing and DNA sequence. Optik 2021, 238, 166748. [Google Scholar] [CrossRef]
- Yu, J.; Xie, W.; Zhong, Z.; Wang, H. Image encryption algorithm based on hyperchaotic system and a new DNA sequence operation. Chaos Solitons Fractals 2022, 162, 112456. [Google Scholar] [CrossRef]
- Wang, X.; Xu, D. A novel image encryption scheme based on brownian motion and pwlcm chaotic system. Nonlinear Dyn. 2014, 75, 345–353. [Google Scholar] [CrossRef]
- Rakheja, P.; Vig, R.; Singh, P. Double image encryption using 3d lorenz chaotic system, 2D non-separable linear canonical transform and qr decomposition. Opt. Quantum Electron. 2020, 52, 1–21. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.-Q.; Sun, Y.-J.; Wang, X.-Y. A novel method for lossless image compression and encryption based on lwt, spiht and cellular automata. Signal Process. Image Commun. 2020, 84, 115829. [Google Scholar] [CrossRef]
- Shao, Z.; Liu, X.; Yao, Q.; Qi, N.; Shang, Y.; Zhang, J. Multiple-image encryption based on chaotic phase mask and equal modulus decomposition in quaternion gyrator domain. Signal Process. Image Commun. 2020, 80, 115662. [Google Scholar] [CrossRef]
- Fridrich, J. Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurc. Chaos 1998, 8, 1259–1284. [Google Scholar] [CrossRef]
- Munoz-Guillermo, M. Image encryption using q-deformed logistic map. Inf. Sci. 2021, 552, 352–364. [Google Scholar] [CrossRef]
- Xuejing, K.; Zihui, G. A new color image encryption scheme based on DNA encoding and spatiotemporal chaotic system. Signal Process. Image Commun. 2020, 80, 115670. [Google Scholar] [CrossRef]
- Saljoughi, A.S.; Mirvaziri, H. A new method for image encryption by 3d chaotic map. Pattern Anal. Appl. 2019, 22, 243–257. [Google Scholar] [CrossRef]
- Arroyo, D.; Rhouma, R.; Alvarez, G.; Li, S.; Fernandez, V. On the security of a new image encryption scheme based on chaotic map lattices. Chaos 2008, 18, 33112. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Chen, H. A hyper-chaos-based image encryption algorithm using pixel-level permutation and bit-level permutation. Opt. Lasers Eng. 2017, 90, 238–246. [Google Scholar] [CrossRef]
- Xu, Q.; Sun, K.; Cao, C.; Zhu, C. A fast image encryption algorithm based on compressive sensing and hyperchaotic map. Opt. Lasers Eng. 2019, 121, 203–214. [Google Scholar] [CrossRef]
- Luo, Y.; Lin, J.; Liu, J.; Wei, D.; Cao, L.; Zhou, R.; Cao, Y.; Ding, X. A robust image encryption algorithm based on chua’s circuit and compressive sensing. Signal Process. 2019, 161, 227–247. [Google Scholar] [CrossRef]
- Ghazanfaripour, H.; Broumandnia, A. Designing a digital image encryption scheme using chaotic maps with prime modular. Opt. Laser Technol. 2020, 131, 106339. [Google Scholar] [CrossRef]
- Wang, X.; Liu, C.; Jiang, D. Visually meaningful image encryption scheme based on new-designed chaotic map and random scrambling diffusion strategy. Chaos Solitons Fractals 2022, 164, 112625. [Google Scholar] [CrossRef]
- Huo, D.; Zhu, Z.; Wei, L.; Han, C.; Zhou, X. A visually secure image encryption scheme based on 2d compressive sensing and integer wavelet transform embedding. Opt. Commun. 2021, 492, 126976. [Google Scholar] [CrossRef]
- Rakheja, P.; Singh, P.; Vig, R. An asymmetric image encryption mechanism using qr decomposition in hybrid multi-resolution wavelet domain. Opt. Lasers Eng. 2020, 134, 106177. [Google Scholar] [CrossRef]
- Shafique, A.; Ahmed, F. Image encryption using dynamic s-box substitution in the wavelet domain. Wirel. Pers. Commun. 2020, 115, 2243–2268. [Google Scholar] [CrossRef]
- Li, X.; Meng, X.; Yang, X.; Wang, Y.; Yin, Y.; Peng, X.; He, W.; Dong, G.; Chen, H. Multipleimage encryption via lifting wavelet transform and xor operation based on compressive ghost imaging scheme. Opt. Lasers Eng. 2018, 102, 106–111. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, D. Image watermarking based on matrix decomposition and gyrator transform in invariant integer wavelet domain. Signal Process. 2020, 169, 107421. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, D. Robust and reliable image copyright protection scheme using downsampling and block transform in integer wavelet domain. Digit. Signal Process. 2020, 106, 102805. [Google Scholar] [CrossRef]
- Shakir, H.R. An image encryption method based on selective aes coding of wavelet transform and chaotic pixel shuffling. Multimed. Tools Appl. 2019, 78, 26073–26087. [Google Scholar] [CrossRef]
- An, F.-P.; Liu, J.-E. Image encryption algorithm based on adaptive wavelet chaos. J. Sens. 2019, 2019, 2768121. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, X.; Wu, X.; Zhang, Y. Image encryption algorithm based on multiple mixed hash functions and cyclic shift. Opt. Lasers Eng. 2018, 107, 370–379. [Google Scholar] [CrossRef]
- Li, Z.; Peng, C.; Tan, W.; Li, L. A novel chaos-based color image encryption scheme using bit-level permutation. Symmetry 2020, 12, 1497. [Google Scholar] [CrossRef]
- Qian, K.; Feng, W.; Qin, Z.; Zhang, J.; Luo, X.; Zhu, Z. A novel image encryption scheme based on memristive chaotic system and combining bidirectional bit-level cyclic shift and dynamic DNA-level diffusion. Front. Phys. 2022, 718, 963795. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Gu, S.-X.; Zhang, Y.-Q. Novel image encryption algorithm based on cycle shift and chaotic system. Opt. Lasers Eng. 2015, 68, 126–134. [Google Scholar] [CrossRef]
- Sweldens, W. The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 1996, 3, 186–200. [Google Scholar] [CrossRef]
- Sweldens, W. The lifting scheme: A construction of second generation wavelets. SIAM J. Math. Anal. 1998, 29, 511–546. [Google Scholar] [CrossRef]
- Li, D.; Liu, Y.; Gong, L. Color image encryption algorithm based on chua’s circuit and chen’s hyper-chaotic system. J. Inf. Comput. Sci. 2015, 12, 1021–1028. [Google Scholar] [CrossRef]
- Tian, J.; Lu, Y.; Zuo, X.; Liu, Y.; Qiao, B.; Fan, M.; Ge, Q.; Fan, S. A novel image encryption algorithm using pwlcm map-based cml chaotic system and dynamic DNA encryption. Multimed. Tools Appl. 2021, 80, 32841–32861. [Google Scholar] [CrossRef]
- Alvarez, G.; Li, S. Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 2006, 16, 2129–2151. [Google Scholar] [CrossRef]
- Zhou, N.; Zhang, A.; Zheng, F.; Gong, L. Novel image compression–encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing. Opt. Laser Technol. 2014, 62, 152–160. [Google Scholar] [CrossRef]
- Zhou, N.; Zhang, A.; Wu, J.; Pei, D.; Yang, Y. Novel hybrid image compression–encryption algorithm based on compressive sensing. Opt.-Int. J. Light Electron. Opt. 2014, 125, 5075–5080. [Google Scholar] [CrossRef]
- Zhou, N.; Li, H.; Wang, D.; Pan, S.; Zhou, Z. Image compression and encryption scheme based on 2D compressive sensing and fractional mellin transform. Opt. Commun. 2015, 343, 10–21. [Google Scholar] [CrossRef]
- Awad, A.; Awad, D. Efficient image chaotic encryption algorithm with no propagation error. Etri J. 2010, 32, 774–783. [Google Scholar] [CrossRef]
- Zhou, K.; Fan, J.; Fan, H.; Li, M. Secure image encryption scheme using double random-phase encoding and compressed sensing. Opt. Laser Technol. 2020, 121, 105769. [Google Scholar] [CrossRef]
- Lu, Q.; Zhu, C.; Deng, X. An efficient image encryption scheme based on the lss chaotic map and single s-box. IEEE Access 2020, 8, 25664–25678. [Google Scholar] [CrossRef]
Images | Horizontal | Vertical | Diagonal |
---|---|---|---|
Man | 0.9592 −0.0001 | 0.9682 −0.0059 | 0.9402 0.0302 |
Zelda | 0.9827 0.0107 | 0.9921 0.0032 | 0.9788 −0.0149 |
Einstein | 0.9718 −0.0101 | 0.9804 0.0045 | 0.9571 −0.0013 |
Lena | 0.9734 0.0171 | 0.9854 0.0081 | 0.9611 −0.0119 |
Mandrill | 0.8746 −0.0081 | 0.7950 0.0042 | 0.7518 −0.01544 |
Gold hill | 0.9717 0.0310 | 0.9739 −0.0220 | 0.9535 0.0060 |
Flintstones | 0.9491 0.0139 | 0.9427 -0.0053 | 0.9069 −0.0210 |
Bridge | 0.9412 −0.0008 | 0.9305 0.0063 | 0.9012 −0.0021 |
Crowd | 0.9068 0.0213 | 0.9095 0.0090 | 0.8479 −0.0059 |
Boat | 0.9406 −0.0040 | 0.9707 0.0209 | 0.9239 −0.0151 |
Direction | Zhou et al. [39] | Zhou et al. [40] | Zhou et al. [41] | Ours |
---|---|---|---|---|
Horizontal | 0.0846 | 0.0198 | 0.0104 | −0.00467 |
Vertical | 0.0583 | 0.0141 | 0.0299 | 0.0135 |
Diagonal | 0.0931 | 0.0026 | 0.0062 | −0.0055 |
Images | Man | Peppers | Bridge | Ideal | |
---|---|---|---|---|---|
NPCR UACI | 99.6213 33.3946 | 99.5983 33.5314 | 99.6342 33.5106 | 99.6094 33.4635 | |
NPCR UACI | 99.6007 33.3146 | 99.5918 33.6196 | 99.6455 33.4489 | 99.6094 33.4635 | |
NPCR UACI | 99.6512 33.5102 | 99.5392 33.3393 | 99.6411 33.5161 | 99.6094 33.4635 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-M.; Deng, Y.; Jiang, M.; Wei, D. Fast Encryption Algorithm Based on Chaotic System and Cyclic Shift in Integer Wavelet Domain. Fractal Fract. 2024, 8, 75. https://doi.org/10.3390/fractalfract8020075
Li Y-M, Deng Y, Jiang M, Wei D. Fast Encryption Algorithm Based on Chaotic System and Cyclic Shift in Integer Wavelet Domain. Fractal and Fractional. 2024; 8(2):75. https://doi.org/10.3390/fractalfract8020075
Chicago/Turabian StyleLi, Yuan-Min, Yang Deng, Mingjie Jiang, and Deyun Wei. 2024. "Fast Encryption Algorithm Based on Chaotic System and Cyclic Shift in Integer Wavelet Domain" Fractal and Fractional 8, no. 2: 75. https://doi.org/10.3390/fractalfract8020075
APA StyleLi, Y. -M., Deng, Y., Jiang, M., & Wei, D. (2024). Fast Encryption Algorithm Based on Chaotic System and Cyclic Shift in Integer Wavelet Domain. Fractal and Fractional, 8(2), 75. https://doi.org/10.3390/fractalfract8020075