Diffusion of an Active Particle Bound to a Generalized Elastic Model: Fractional Langevin Equation
Abstract
:1. Introduction
Generalized Elastic Model with Active Brownian Particle
2. Fractional Langevin Equation
3. h-Autocorrelation Function
4. Mean Square Displacement
4.1. AOUP’s MSD
4.1.1.
- .We can split the integral and solve the first one [114]:Hence, we integrate the second by parts and we expand the resulting trigonometric functions for small argumentsBy evaluating the remaining integrals, we obtain the final result
- .The integral (35) is in this caseIntegrating by parts, we haveWe can neglect the second and split the first into two contributionsThen, we can retain only the first one, as the second is nearly zero, and expand the sine for small arguments, obtaining [114]
- .This case is the easier to be handled. Expanding the cosine for small arguments in (35) yields
4.1.2.
- .From (36), after integrating by parts, it is obtainedThe major contributions to the integrals appearing in (44) come from ; hence, may be properly approximated to
- .We recap from the expression (40), neglecting the second integral on the RHS and retaining only the contributions coming from in the first:
- .As in the previous situations, the main contributions to the integral in (35) will arise from ; hence,By integration by parts, it becomes
- when
- :
4.2. MSD at a Generic Position
- .Probes very close to the AOUP exhibit an initial thermal subdiffusive behavior . Subsequently, the probe at behaves identically to the AOUP.
- .
- .Probes that satisfy this condition, i.e., probes far away from the AOUP, are not influenced by the action of the active force.
5. Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
References
- Bechinger, C.; Di Leonardo, R.; Löwen, H.; Reichhardt, C.; Volpe, G.; Volpe, G. Active particles in complex and crowded environments. Rev. Mod. Phys. 2016, 88, 45006. [Google Scholar] [CrossRef]
- Marchetti, M.C.; Joanny, J.F.; Ramaswamy, S.; Liverpool, T.B.; Prost, J.; Rao, M.; Simha, R.A. Hydrodynamics of soft active matter. Rev. Mod. Phys. 2013, 85, 1143. [Google Scholar] [CrossRef]
- Elgeti, J.; Winkler, R.G.; Gompper, G. Physics of microswimmers—Single particle motion and collective behavior: A review. Rep. Prog. Phys. 2015, 78, 56601. [Google Scholar] [CrossRef]
- Romanczuk, P.; Bär, M.; Ebeling, W.; Lindner, B.; Schimansky-Geier, L. Active Brownian particles: From individual to collective stochastic dynamics. Eur. Phys. J. Spec. Top. 2012, 202, 1–162. [Google Scholar] [CrossRef]
- Ramaswamy, S. The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 2010, 1, 323–345. [Google Scholar] [CrossRef]
- Reynolds, C.W. Flocks, herds and schools: A distributed behavioral model. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, Anaheim, CA, USA, 27–31 July 1987; pp. 25–34. [Google Scholar]
- Olfati-Saber, R. Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Trans. Autom. Control. 2006, 51, 401–420. [Google Scholar] [CrossRef]
- Czirók, A.; Barabási, A.L.; Vicsek, T. Collective motion of self-propelled particles: Kinetic phase transition in one dimension. Phys. Rev. Lett. 1999, 82, 209. [Google Scholar] [CrossRef]
- Bialek, W.; Cavagna, A.; Giardina, I.; Mora, T.; Silvestri, E.; Viale, M.; Walczak, A.M. Statistical mechanics for natural flocks of birds. Proc. Natl. Acad. Sci. USA 2012, 109, 4786–4791. [Google Scholar] [CrossRef]
- Cavagna, A.; Cimarelli, A.; Giardina, I.; Parisi, G.; Santagati, R.; Stefanini, F.; Viale, M. Scale-free correlations in starling flocks. Proc. Natl. Acad. Sci. USA 2010, 107, 11865–11870. [Google Scholar] [CrossRef]
- Attanasi, A.; Cavagna, A.; Del Castello, L.; Giardina, I.; Grigera, T.S.; Jelić, A.; Melillo, S.; Parisi, L.; Pohl, O.; Shen, E.; et al. Information transfer and behavioural inertia in starling flocks. Nat. Phys. 2014, 10, 691–696. [Google Scholar] [CrossRef]
- Couzin, I.D.; Ioannou, C.C.; Demirel, G.; Gross, T.; Torney, C.J.; Hartnett, A.; Conradt, L.; Levin, S.A.; Leonard, N.E. Uninformed individuals promote democratic consensus in animal groups. Science 2011, 334, 1578–1580. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Escudero, A.; de Polavieja, G. Collective animal behavior from Bayesian estimation and probability matching. PLoS Comput. Biol. 2011, 7, e1002282. [Google Scholar]
- Couzin, I.D.; Krause, J. Self-organization and collective behavior in vertebrates. Adv. Study Behav. 2003, 32, 10–1016. [Google Scholar]
- Berg, H.C. E. coli in Motion; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Lauga, E.; Goldstein, R.E. Dance of the microswimmers. Phys. Today 2012, 65, 30–35. [Google Scholar] [CrossRef]
- Matthäus, F.; Jagodič, M.; Dobnikar, J. E. coli superdiffusion and chemotaxis—Search strategy, precision, and motility. Biophys. J. 2009, 97, 946–957. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.L.; Libchaber, A. Particle diffusion in a quasi-two-dimensional bacterial bath. Phys. Rev. Lett. 2000, 84, 3017. [Google Scholar] [CrossRef] [PubMed]
- Leptos, K.C.; Guasto, J.S.; Gollub, J.P.; Pesci, A.I.; Goldstein, R.E. Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms. Phys. Rev. Lett. 2009, 103, 198103. [Google Scholar] [CrossRef]
- Gal, N.; Weihs, D. Experimental evidence of strong anomalous diffusion in living cells. Phys. Rev. E 2010, 81, 20903. [Google Scholar] [CrossRef]
- Chen, K.; Wang, B.; Granick, S. Memoryless self-reinforcing directionality in endosomal active transport within living cells. Nat. Mater. 2015, 14, 589–593. [Google Scholar] [CrossRef]
- Gal, N.; Lechtman-Goldstein, D.; Weihs, D. Particle tracking in living cells: A review of the mean square displacement method and beyond. Rheol. Acta 2013, 52, 425–443. [Google Scholar] [CrossRef]
- Weber, C.A.; Suzuki, R.; Schaller, V.; Aranson, I.S.; Bausch, A.R.; Frey, E. Random bursts determine dynamics of active filaments. Proc. Natl. Acad. Sci. USA 2015, 112, 10703–10707. [Google Scholar] [CrossRef] [PubMed]
- Palacci, J.; Cottin-Bizonne, C.; Ybert, C.; Bocquet, L. Sedimentation and effective temperature of active colloidal suspensions. Phys. Rev. Lett. 2010, 105, 88304. [Google Scholar] [CrossRef] [PubMed]
- Howse, J.R.; Jones, R.A.; Ryan, A.J.; Gough, T.; Vafabakhsh, R.; Golestanian, R. Self-motile colloidal particles: From directed propulsion to random walk. Phys. Rev. Lett. 2007, 99, 48102. [Google Scholar] [CrossRef]
- Dreyfus, R.; Baudry, J.; Roper, M.L.; Fermigier, M.; Stone, H.A.; Bibette, J. Microscopic artificial swimmers. Nature 2005, 437, 862–865. [Google Scholar] [CrossRef] [PubMed]
- Tierno, P.; Golestanian, R.; Pagonabarraga, I.; Sagués, F. Controlled swimming in confined fluids of magnetically actuated colloidal rotors. Phys. Rev. Lett. 2008, 101, 218304. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Fischer, P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 2009, 9, 2243–2245. [Google Scholar] [CrossRef]
- Bricard, A.; Caussin, J.B.; Desreumaux, N.; Dauchot, O.; Bartolo, D. Emergence of macroscopic directed motion in populations of motile colloids. Nature 2013, 503, 95–98. [Google Scholar] [CrossRef]
- Di Leonardo, R. Controlled collective motions. Nat. Mater. 2016, 15, 1057–1058. [Google Scholar] [CrossRef]
- Yan, J.; Han, M.; Zhang, J.; Xu, C.; Luijten, E.; Granick, S. Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 2016, 15, 1095–1099. [Google Scholar] [CrossRef]
- Nishiguchi, D.; Iwasawa, J.; Jiang, H.R.; Sano, M. Flagellar dynamics of chains of active Janus particles fueled by an AC electric field. New J. Phys. 2018, 20, 15002. [Google Scholar] [CrossRef]
- Maggi, C.; Paoluzzi, M.; Angelani, L.; Di Leonardo, R. Memory-less response and violation of the fluctuation-dissipation theorem in colloids suspended in an active bath. Sci. Rep. 2017, 7, 17588. [Google Scholar] [CrossRef] [PubMed]
- Fodor, É.; Nardini, C.; Cates, M.E.; Tailleur, J.; Visco, P.; Van Wijland, F. How far from equilibrium is active matter? Phys. Rev. Lett. 2016, 117, 38103. [Google Scholar] [CrossRef]
- Maggi, C.; Paoluzzi, M.; Pellicciotta, N.; Lepore, A.; Angelani, L.; Di Leonardo, R. Generalized energy equipartition in harmonic oscillators driven by active baths. Phys. Rev. Lett. 2014, 113, 238303. [Google Scholar] [CrossRef]
- Cates, M.E.; Tailleur, J. Motility-induced phase separation. Annu. Rev. Condens. Matter Phys. 2015, 6, 219–244. [Google Scholar] [CrossRef]
- Reverey, J.F.; Jeon, J.H.; Bao, H.; Leippe, M.; Metzler, R.; Selhuber-Unkel, C. Superdiffusion dominates intracellular particle motion in the supercrowded cytoplasm of pathogenic Acanthamoeba castellanii. Sci. Rep. 2015, 5, 11690. [Google Scholar] [CrossRef] [PubMed]
- Budrene, E.O.; Berg, H.C. Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 1995, 376, 49–53. [Google Scholar] [CrossRef]
- Brenner, M.P.; Levitov, L.S.; Budrene, E.O. Physical mechanisms for chemotactic pattern formation by bacteria. Biophys. J. 1998, 74, 1677–1693. [Google Scholar] [CrossRef]
- Omar, A.K.; Klymko, K.; GrandPre, T.; Geissler, P.L. Phase diagram of active Brownian spheres: Crystallization and the metastability of motility-induced phase separation. Phys. Rev. Lett. 2021, 126, 188002. [Google Scholar] [CrossRef]
- Alert, R.; Casademunt, J.; Joanny, J.F. Active turbulence. Annu. Rev. Condens. Matter Phys. 2022, 13, 143–170. [Google Scholar] [CrossRef]
- Kafri, Y.; da Silveira, R.A. Steady-state chemotaxis in Escherichia coli. Phys. Rev. Lett. 2008, 100, 238101. [Google Scholar] [CrossRef]
- Tailleur, J.; Cates, M. Statistical mechanics of interacting run-and-tumble bacteria. Phys. Rev. Lett. 2008, 100, 218103. [Google Scholar] [CrossRef] [PubMed]
- Ben-Isaac, E.; Fodor, É.; Visco, P.; Van Wijland, F.; Gov, N.S. Modeling the dynamics of a tracer particle in an elastic active gel. Phys. Rev. E 2015, 92, 12716. [Google Scholar] [CrossRef]
- Zheng, X.; Ten Hagen, B.; Kaiser, A.; Wu, M.; Cui, H.; Silber-Li, Z.; Löwen, H. Non-Gaussian statistics for the motion of self-propelled Janus particles: Experiment versus theory. Phys. Rev. E 2013, 88, 32304. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, G.P.; Wittmann, R.; Löwen, H. Active Ornstein–Uhlenbeck model for self-propelled particles with inertia. J. Phys. Condens. Matter 2021, 34, 35101. [Google Scholar] [CrossRef] [PubMed]
- Caprini, L.; Marconi, U.M.B.; Wittmann, R.; Löwen, H. Dynamics of active particles with space-dependent swim velocity. Soft Matter 2022, 18, 1412–1422. [Google Scholar] [CrossRef]
- Sprenger, A.R.; Caprini, L.; Löwen, H.; Wittmann, R. Dynamics of active particles with translational and rotational inertia. J. Phys. Condens. Matter 2023, 35, 305101. [Google Scholar] [CrossRef] [PubMed]
- Caprini, L.; Bettolo Marconi, U.M.; Wittmann, R.; Löwen, H. Active particles driven by competing spatially dependent self-propulsion and external force. SciPost Phys. 2022, 13, 065. [Google Scholar] [CrossRef]
- Samanta, N.; Chakrabarti, R. Chain reconfiguration in active noise. J. Phys. Math. Theor. 2016, 49, 195601. [Google Scholar] [CrossRef]
- MacKintosh, F.C.; Janmey, P.A. Actin gels. Curr. Opin. Solid State Mater. Sci. 1997, 2, 350–357. [Google Scholar] [CrossRef]
- Eisenstecken, T.; Gompper, G.; Winkler, R.G. Conformational properties of active semiflexible polymers. Polymers 2016, 8, 304. [Google Scholar] [CrossRef]
- Kaiser, A.; Babel, S.; ten Hagen, B.; von Ferber, C.; Löwen, H. How does a flexible chain of active particles swell? J. Chem. Phys. 2015, 142, 124905. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.K.; Singh, S.P. Behavior of active filaments near solid-boundary under linear shear flow. Soft Matter 2019, 15, 4008–4018. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Cherstvy, A.G.; Kim, W.K.; Metzler, R. Facilitation of polymer looping and giant polymer diffusivity in crowded solutions of active particles. New J. Phys. 2015, 17, 113008. [Google Scholar] [CrossRef]
- Chaki, S.; Chakrabarti, R. Enhanced diffusion, swelling, and slow reconfiguration of a single chain in non-Gaussian active bath. J. Chem. Phys. 2019, 150, 94902. [Google Scholar] [CrossRef] [PubMed]
- Nikola, N.; Solon, A.P.; Kafri, Y.; Kardar, M.; Tailleur, J.; Voituriez, R. Active particles with soft and curved walls: Equation of state, ratchets, and instabilities. Phys. Rev. Lett. 2016, 117, 98001. [Google Scholar] [CrossRef]
- Harder, J.; Valeriani, C.; Cacciuto, A. Activity-induced collapse and reexpansion of rigid polymers. Phys. Rev. E 2014, 90, 62312. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.C.; Spakowitz, A.J.; Theriot, J.A. Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci. Proc. Natl. Acad. Sci. USA 2012, 109, 7338–7343. [Google Scholar] [CrossRef]
- Bronshtein, I.; Kepten, E.; Kanter, I.; Berezin, S.; Lindner, M.; Redwood, A.B.; Mai, S.; Gonzalo, S.; Foisner, R.; Shav-Tal, Y.; et al. Loss of lamin A function increases chromatin dynamics in the nuclear interior. Nat. Commun. 2015, 6, 8044. [Google Scholar] [CrossRef]
- Bronstein, I.; Israel, Y.; Kepten, E.; Mai, S.; Shav-Tal, Y.; Barkai, E.; Garini, Y. Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys. Rev. Lett. 2009, 103, 18102. [Google Scholar] [CrossRef]
- Wang, X.; Kam, Z.; Carlton, P.M.; Xu, L.; Sedat, J.W.; Blackburn, E.H. Rapid telomere motions in live human cells analyzed by highly time-resolved microscopy. Epigenetics Chromatin 2008, 1, 4. [Google Scholar] [CrossRef]
- Stadler, L.; Weiss, M. Non-equilibrium forces drive the anomalous diffusion of telomeres in the nucleus of mammalian cells. New J. Phys. 2017, 19, 113048. [Google Scholar] [CrossRef]
- Ku, H.; Park, G.; Goo, J.; Lee, J.; Park, T.L.; Shim, H.; Kim, J.H.; Cho, W.K.; Jeong, C. Effects of transcription-dependent physical perturbations on the chromosome dynamics in living cells. Front. Cell Dev. Biol. 2022, 10, 822026. [Google Scholar] [CrossRef] [PubMed]
- Colin, A.; Singaravelu, P.; Théry, M.; Blanchoin, L.; Gueroui, Z. Actin-network architecture regulates microtubule dynamics. Curr. Biol. 2018, 28, 2647–2656. [Google Scholar] [CrossRef]
- Sonn-Segev, A.; Bernheim-Groswasser, A.; Roichman, Y. Dynamics in steady state in vitro acto-myosin networks. J. Phys. Condens. Matter 2017, 29, 163002. [Google Scholar] [CrossRef] [PubMed]
- Köster, D.V.; Husain, K.; Iljazi, E.; Bhat, A.; Bieling, P.; Mullins, R.D.; Rao, M.; Mayor, S. Actomyosin dynamics drive local membrane component organization in an in vitro active composite layer. Proc. Natl. Acad. Sci. USA 2016, 113, E1645–E1654. [Google Scholar] [CrossRef] [PubMed]
- Harada, Y.; Noguchi, A.; Kishino, A.; Yanagida, T. Sliding movement of single actin filaments on one-headed myosin filaments. Nature 1987, 326, 805–808. [Google Scholar] [CrossRef]
- Amblard, F.; Maggs, A.C.; Yurke, B.; Pargellis, A.N.; Leibler, S. Subdiffusion and anomalous local viscoelasticity in actin networks. Phys. Rev. Lett. 1996, 77, 4470. [Google Scholar] [CrossRef]
- Wong, I.; Gardel, M.; Reichman, D.; Weeks, E.R.; Valentine, M.; Bausch, A.; Weitz, D.A. Anomalous diffusion probes microstructure dynamics of entangled F-actin networks. Phys. Rev. Lett. 2004, 92, 178101. [Google Scholar] [CrossRef]
- Pollard, T.D.; Cooper, J.A. Actin, a central player in cell shape and movement. Science 2009, 326, 1208–1212. [Google Scholar] [CrossRef]
- Henkin, G.; DeCamp, S.J.; Chen, D.T.; Sanchez, T.; Dogic, Z. Tunable dynamics of microtubule-based active isotropic gels. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2014, 372, 20140142. [Google Scholar] [CrossRef]
- Kahana, A.; Kenan, G.; Feingold, M.; Elbaum, M.; Granek, R. Active transport on disordered microtubule networks: The generalized random velocity model. Phys. Rev. E 2008, 78, 51912. [Google Scholar] [CrossRef] [PubMed]
- Vale, R.D.; Hotani, H. Formation of membrane networks in vitro by kinesin-driven microtubule movement. J. Cell Biol. 1988, 107, 2233–2241. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, T.; Chen, D.T.; DeCamp, S.J.; Heymann, M.; Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 2012, 491, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Speckner, K.; Stadler, L.; Weiss, M. Anomalous dynamics of the endoplasmic reticulum network. Phys. Rev. E 2018, 98, 12406. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Zhang, Y.; Sparkes, I.; Ashwin, P. Structure and dynamics of ER: Minimal networks and biophysical constraints. Biophys. J. 2014, 107, 763–772. [Google Scholar] [CrossRef]
- Mizuno, D.; Tardin, C.; Schmidt, C.F.; MacKintosh, F.C. Nonequilibrium mechanics of active cytoskeletal networks. Science 2007, 315, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Sonn-Segev, A.; Bernheim-Groswasser, A.; Roichman, Y. Scale dependence of the mechanics of active gels with increasing motor concentration. Soft Matter 2017, 13, 7352–7359. [Google Scholar] [CrossRef]
- Jeon, J.H.; Tejedor, V.; Burov, S.; Barkai, E.; Selhuber-Unkel, C.; Berg-Sørensen, K.; Oddershede, L.; Metzler, R. In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett. 2011, 106, 048103. [Google Scholar] [CrossRef]
- Toyota, T.; Head, D.A.; Schmidt, C.F.; Mizuno, D. Non-Gaussian athermal fluctuations in active gels. Soft Matter 2011, 7, 3234–3239. [Google Scholar] [CrossRef]
- Wilhelm, C. Out-of-equilibrium microrheology inside living cells. Phys. Rev. Lett. 2008, 101, 28101. [Google Scholar] [CrossRef]
- Celli, J.; Gregor, B.; Turner, B.; Afdhal, N.H.; Bansil, R.; Erramilli, S. Viscoelastic properties and dynamics of porcine gastric mucin. Biomacromolecules 2005, 6, 1329–1333. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.E.; Turner, B.S.; Rubinstein, M.; McKinley, G.H.; Ribbeck, K. A rheological study of the association and dynamics of MUC5AC gels. Biomacromolecules 2017, 18, 3654–3664. [Google Scholar] [CrossRef] [PubMed]
- Gan, D.; Xu, T.; Xing, W.; Ge, X.; Fang, L.; Wang, K.; Ren, F.; Lu, X. Mussel-inspired contact-active antibacterial hydrogel with high cell affinity, toughness, and recoverability. Adv. Funct. Mater. 2019, 29, 1805964. [Google Scholar] [CrossRef]
- Cherstvy, A.G.; Thapa, S.; Wagner, C.E.; Metzler, R. Non-Gaussian, non-ergodic, and non-Fickian diffusion of tracers in mucin hydrogels. Soft Matter 2019, 15, 2526–2551. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Gov, N. Dynamics of active semiflexible polymers. Biophys. J. 2014, 107, 1065–1073. [Google Scholar] [CrossRef]
- Isele-Holder, R.E.; Elgeti, J.; Gompper, G. Self-propelled worm-like filaments: Spontaneous spiral formation, structure, and dynamics. Soft Matter 2015, 11, 7181–7190. [Google Scholar] [CrossRef]
- Isele-Holder, R.E.; Jäger, J.; Saggiorato, G.; Elgeti, J.; Gompper, G. Dynamics of self-propelled filaments pushing a load. Soft Matter 2016, 12, 8495–8505. [Google Scholar] [CrossRef]
- Laskar, A.; Adhikari, R. Filament actuation by an active colloid at low Reynolds number. New J. Phys. 2017, 19, 33021. [Google Scholar] [CrossRef]
- Chelakkot, R.; Winkler, R.G.; Gompper, G. Flow-induced helical coiling of semiflexible polymers in structured microchannels. Phys. Rev. Lett. 2012, 109, 178101. [Google Scholar] [CrossRef]
- Kaiser, A.; Löwen, H. Unusual swelling of a polymer in a bacterial bath. J. Chem. Phys. 2014, 141, 044903. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, H.; Hou, Z. Configuration dynamics of a flexible polymer chain in a bath of chiral active particles. J. Chem. Phys. 2019, 151, 174904. [Google Scholar] [CrossRef]
- Jiang, H.; Hou, Z. Motion transition of active filaments: Rotation without hydrodynamic interactions. Soft Matter 2014, 10, 1012–1017. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.; Thakur, S. Coarse-grained simulations of an active filament propelled by a self-generated solute gradient. Phys. Rev. E 2016, 93, 32508. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Zhang, B.; Zhao, N. Crowding-activity coupling effect on conformational change of a semi-flexible polymer. Polymers 2019, 11, 1021. [Google Scholar] [CrossRef] [PubMed]
- Prathyusha, K.; Henkes, S.; Sknepnek, R. Dynamically generated patterns in dense suspensions of active filaments. Phys. Rev. E 2018, 97, 22606. [Google Scholar] [CrossRef]
- Bianco, V.; Locatelli, E.; Malgaretti, P. Globulelike conformation and enhanced diffusion of active polymers. Phys. Rev. Lett. 2018, 121, 217802. [Google Scholar] [CrossRef] [PubMed]
- Duman, Ö.; Isele-Holder, R.E.; Elgeti, J.; Gompper, G. Collective dynamics of self-propelled semiflexible filaments. Soft Matter 2018, 14, 4483–4494. [Google Scholar] [CrossRef]
- Natali, L.; Caprini, L.; Cecconi, F. How a local active force modifies the structural properties of polymers. Soft Matter 2020, 16, 2594–2604. [Google Scholar] [CrossRef]
- Joo, S.; Durang, X.; Lee, O.c.; Jeon, J.H. Anomalous diffusion of active Brownian particles cross-linked to a networked polymer: Langevin dynamics simulation and theory. Soft Matter 2020, 16, 9188–9201. [Google Scholar] [CrossRef]
- Han, H.; Joo, S.; Sakaue, T.; Jeon, J.H. Nonequilibrium diffusion of active particles bound to a semi-flexible polymer network: Simulations and fractional Langevin equation. arXiv 2023, arXiv:2303.05851. [Google Scholar]
- Taloni, A.; Chechkin, A.; Klafter, J. Generalized elastic model yields a fractional Langevin equation description. Phys. Rev. Lett. 2010, 104, 160602. [Google Scholar] [CrossRef] [PubMed]
- Taloni, A.; Chechkin, A.; Klafter, J. Correlations in a generalized elastic model: Fractional Langevin equation approach. Phys. Rev. E 2010, 82, 061104. [Google Scholar] [CrossRef] [PubMed]
- Zimm, B.H. Dynamics of polymer molecules in dilute solution: Viscoelasticity, flow birefringence and dielectric loss. J. Chem. Phys. 1956, 24, 269–278. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Marichev, O.I.; Samko, S.G. Fractional Integrals and Derivatives (Theory and Applications); Gordon and Breach Science Publishers: Philadelphia, PA, USA, 1993. [Google Scholar]
- Saichev, A.I.; Zaslavsky, G.M. Fractional kinetic equations: Solutions and applications. Chaos Interdiscip. J. Nonlinear Sci. 1997, 7, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Taloni, A.; Chechkin, A.; Klafter, J. Unusual response to a localized perturbation in a generalized elastic model. Phys. Rev. E 2011, 84, 21101. [Google Scholar] [CrossRef] [PubMed]
- Taloni, A.; Chechkin, A.; Klafter, J. Generalized elastic model: Fractional Langevin description, fluctuation relation and linear response. Math. Model. Nat. Phenom. 2013, 8, 127–143. [Google Scholar] [CrossRef]
- Taloni, A. Kubo fluctuation relations in the generalized elastic model. Adv. Math. Phys. 2016, 2016, 7502472. [Google Scholar] [CrossRef]
- Um, J.; Song, T.; Jeon, J.H. Langevin dynamics driven by a telegraphic active noise. Front. Phys. 2019, 7, 143. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Abramowitz, M.; Stegun, I.A.; Romer, R.H. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; Dover Publications: Mineola, NY, USA, 1988. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Mandelbrot, B.B.; Van Ness, J.W. Fractional Brownian motions, fractional noises and applications. SIAM Rev. 1968, 10, 422–437. [Google Scholar] [CrossRef]
- Hardy, G.H. Divergent Series; American Mathematical Society: Providence, RI, USA, 2000; Volume 334. [Google Scholar]
- Taloni, A.; Chechkin, A.; Klafter, J. Generalized elastic model: Thermal vs. non-thermal initial conditions—Universal scaling, roughening, ageing and ergodicity. Europhys. Lett. 2012, 97, 30001. [Google Scholar] [CrossRef]
- Osmanović, D.; Rabin, Y. Dynamics of active Rouse chains. Soft Matter 2017, 13, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Osmanović, D. Properties of Rouse polymers with actively driven regions. J. Chem. Phys. 2018, 149, 164911. [Google Scholar] [CrossRef] [PubMed]
- Sakaue, T.; Saito, T. Active diffusion of model chromosomal loci driven by athermal noise. Soft Matter 2017, 13, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Panja, D. Anomalous polymer dynamics is non-Markovian: Memory effects and the generalized Langevin equation formulation. J. Stat. Mech. Theory Exp. 2010, 2010, P06011. [Google Scholar] [CrossRef]
- Panja, D. Generalized Langevin equation formulation for anomalous polymer dynamics. J. Stat. Mech. Theory Exp. 2010, 2010, L02001. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taloni, A. Diffusion of an Active Particle Bound to a Generalized Elastic Model: Fractional Langevin Equation. Fractal Fract. 2024, 8, 76. https://doi.org/10.3390/fractalfract8020076
Taloni A. Diffusion of an Active Particle Bound to a Generalized Elastic Model: Fractional Langevin Equation. Fractal and Fractional. 2024; 8(2):76. https://doi.org/10.3390/fractalfract8020076
Chicago/Turabian StyleTaloni, Alessandro. 2024. "Diffusion of an Active Particle Bound to a Generalized Elastic Model: Fractional Langevin Equation" Fractal and Fractional 8, no. 2: 76. https://doi.org/10.3390/fractalfract8020076
APA StyleTaloni, A. (2024). Diffusion of an Active Particle Bound to a Generalized Elastic Model: Fractional Langevin Equation. Fractal and Fractional, 8(2), 76. https://doi.org/10.3390/fractalfract8020076