Measurement of 2D and 3D Fractal Features of Urban Morphology from an Architectural View and Its Influencing Factors
Abstract
:1. Introduction
- (1)
- The 3D voxel-counting fractal dimension model for architectural object measurement remains in the primary stage.
- (2)
- A fine-scaled study on fractal features within urban sub-zones has not been conducted, nor has its visualization.
- (3)
- The relationship between 2D or 3D fractal dimensions as well as their influencing factors, such as road network variables and land-use patterns, have not been explored.
2. Study Area, Methodologies and Variables
2.1. Study Area
2.2. Methodologies
2.2.1. 2D Fractal Dimension (2D_FD) and 3D Fractal Dimension (3D_FD)
2.2.2. Space Syntax Modelling
2.2.3. MGWR
2.3. Variable Selection and Mapping
3. Results and Analysis
3.1. The Measurement Results of Fractal Dimensions
3.1.1. The Fractal Measurement of Typical Grids
3.1.2. Visualization and Zoning Statistics of Fractal Dimensions
3.2. The MGWR Results Revealing the Influencing Factors on Fractal Dimensions
3.2.1. General Effect of the MGWR Regression
3.2.2. The Spatial Distribution of Regression Coefficients
4. Discussion
4.1. Discussion of the Fractal Measurement at the Subzone Level
4.2. Discussion of the Pattern of Influencing Factors for Urban Morphology
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Takayasu, H. Fractals in the Physical Sciences; Manchester University Press: Manchester, UK, 1990. [Google Scholar]
- Chen, Y. Fractal Modeling and Fractal Dimension Description of Urban Morphology. Entropy 2020, 22, 961. [Google Scholar] [CrossRef] [PubMed]
- Batty, M. The size, scale, and shape of cities. Science 2008, 319, 769–771. [Google Scholar] [CrossRef]
- Batty, M.; Longley, P.A. The fractal simulation of urban structure. Environ. Plann. A 1986, 18, 1143–1179. [Google Scholar] [CrossRef]
- Benguigui, L.; Marinov, M.; Portugali, Y. When and where is a city fractal? Environ. Plann. B-Urban 2000, 27, 507–519. [Google Scholar] [CrossRef]
- Feng, J.; Chen, Y. Spatiotemporal evolution of urban form and land-use structure in Hangzhou, China: Evidence from fractals. Environ. Plann. B-Urban 2010, 37, 838–856. [Google Scholar] [CrossRef]
- Yin, J. Dynamical fractal: Theory and case study. Chaos Soliton. Fract. 2023, 176, 114190. [Google Scholar] [CrossRef]
- Mandelbrot, B. The Fractal Geometry of Nature; W. H. Freeman and Company: New York, NY, USA, 1983. [Google Scholar]
- Chen, Y. Derivation of the functional relations between fractal dimension of and shape indices of urban form. Comput. Environ. Urban 2011, 35, 442–451. [Google Scholar] [CrossRef]
- Tannier, C.; Thomas, I. Defining and characterizing urban boundaries: A fractal analysis of theoretical cities and Belgian cities. Comput. Environ. Urban 2013, 41, 234–248. [Google Scholar] [CrossRef]
- Frankhauser, P.; La, F. Structures Urbaines (The Fractal Aspects of Urban Structures); Economica, Anthropos: Paris, France, 1994. [Google Scholar]
- Carmen, G.; Jesús, S. Covering fractals with constant radius tiles: Distribution functions and their implications for resource management. Chaos Soliton. Fract. 2021, 143, 110626. [Google Scholar]
- Chen, Y. Fractal analytical approach of urban form based on spatial correlation function. Chaos Soliton. Fract. 2013, 49, 47–60. [Google Scholar] [CrossRef]
- Chen, L.; Feng, R.; Wang, L. Fractal Characteristic Analysis of Urban Land-Cover Spatial Patterns with Spatiotemporal Remote Sensing Images in Shenzhen City (1988–2015). Remote Sens. 2021, 13, 4640. [Google Scholar] [CrossRef]
- Tara, A.; Patuano, A.; Lawson, G. Between 2D and 3D:Studying Structural Complexity of Urban Fabric Using Voxels and LiDAR-Derived DSMs. Fractal Fract. 2021, 5, 227. [Google Scholar] [CrossRef]
- Sui, L.; Wang, H.; Wu, J.; Zhang, J.; Yu, J.; Ma, X.; Sun, Q. Fractal Description of Rock Fracture Networks Based on the Space Syntax Metric. Fractal Fract. 2022, 6, 353. [Google Scholar] [CrossRef]
- Deng, H.; Wen, W.; Zhang, W. Analysis of Road Networks Features of Urban Municipal District Based on Fractal Dimension. ISPRS Int. J. Geo-Inf. 2023, 12, 188. [Google Scholar] [CrossRef]
- Wang, J.; Lu, F.; Liu, S. A classification-based multifractal analysis method for identifying urban multifractal structures considering geographic mapping. Comput. Environ. Urban 2023, 101, 101952. [Google Scholar] [CrossRef]
- Guo, J.; Han, G.; Xie, Y.; Cai, Z.; Zhao, Y. Exploring the relationships between urban spatial form factors and land surface temperature in mountainous area: A case study in Chongqing city, China. Sustain. Cities Soc. 2020, 61, 102286. [Google Scholar] [CrossRef]
- Boeing, G. Spatial information and the legibility of urban form: Big data in urban morphology. Int. J. Inform. Manag. 2021, 56, 102013. [Google Scholar] [CrossRef]
- Kulcke, M.; Lorenz, W. Spherical Box-Counting: Combining 360° Panoramas with Fractal Analysis. Fractal Fract. 2023, 7, 327. [Google Scholar] [CrossRef]
- Dawes, M.; Ostwald, M.; Lee, J. The Mathematics of ‘Natural Beauty’ in the Architecture of Andrea Palladio and Le Corbusier: An Analysis of Colin Rowe’s Theory of Formal Complexity Using Fractal Dimensions. Fractal Fract. 2023, 7, 139. [Google Scholar] [CrossRef]
- Katona, V. The Hidden Dimension of Facades: Fractal Analysis Reveals Composition Rules in Classical and Renaissance Architecture. Fractal Fract. 2023, 7, 257. [Google Scholar] [CrossRef]
- Tian, J.; Yu, M.; Ren, C.; Lei, Y. Network-scape metric analysis: A new approach for the pattern analysis of urban road networks. Int. J. Geogra Inf. Sci. 2018, 33, 537–566. [Google Scholar] [CrossRef]
- Xu, J. From walking buffers to active places: An activity-based approach to measure human-scale urban form. Landsc. Urban Plan 2019, 191, 103452. [Google Scholar] [CrossRef]
- Shi, B.; Yang, J. Scale, distribution, and pattern of mixed land use in central districts: A case study of Nanjing, China. Habitat Int. 2015, 46, 166–177. [Google Scholar] [CrossRef]
- Meng, Y.; Xing, H. Exploring the relationship between landscape characteristics and urban vibrancy: A case study using morphology and review data. Cities 2019, 95, 102389. [Google Scholar] [CrossRef]
- Yunitsyna, A.; Shtepani, E. Investigating the socio-spatial relations of the built environment using the Space Syntax analysis—A case study of Tirana City. Cities 2022, 133, 104147. [Google Scholar] [CrossRef]
- Serra, M.; Hillier, B. Angular and Metric Distance in Road Network Analysis: A nationwide correlation study. Comput. Environ. Urban 2019, 74, 194–207. [Google Scholar] [CrossRef]
- Yang, X.; Chen, X.; Qiao, F.; Che, L.; Pu, L. Layout optimization and multi-scenarios for land use: An empirical study of production-living-ecological space in the Lanzhou-Xining City Cluster, China. Ecol. Indic. 2022, 145, 109577. [Google Scholar] [CrossRef]
- Wu, C.; Ye, Y.; Gao, F.; Ye, X. Using street view images to examine the association between human perceptions of locale and urban vitality in Shenzhen, China. Sustain. Cities Soc. 2023, 88, 104291. [Google Scholar] [CrossRef]
- Guo, F.; Schlink, U.; Wu, W.; Mohamdeen, A. Differences in Urban Morphology between 77 Cities in China and Europe. Remote Sens. 2022, 14, 5462. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, J.; Ding, C.; Wang, Y. A geographically and temporally weighted regression model to explore the spatiotemporal influence of built environment on transit ridership. Comput. Environ. Urban 2018, 70, 113–124. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, B. Spatial Heterogeneity of Urban Road Network Fractal Characteristics and Influencing Factors. Sustainability 2023, 15, 12141. [Google Scholar] [CrossRef]
- Frankhause, P. The fractal approach: A new tool for the spatial analysis of urban agglomerations. Popul. Engl. Sel. 1998, 10, 205–240. [Google Scholar]
- Zhang, H.; Lan, T.; Li, Z. Fractal evolution of urban street networks in form and structure: A case study of Hong Kong. Int. J. Geogra Inf. Sci. 2022, 36, 1100–1118. [Google Scholar] [CrossRef]
- Hillier, B. Space Is the Machine: A Configurational Theory of Architecture; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Fotheringham, W.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Ann. Am. Assoc. Geogr. 2017, 107, 1247–1265. [Google Scholar] [CrossRef]
- Wu, J.; Tu, Y.; Chen, Z.; Yu, B. Analyzing the Spatially Heterogeneous Relationships between Nighttime Light Intensity and Human Activities across Chongqing, China. Remote Sens. 2022, 14, 5695. [Google Scholar] [CrossRef]
- Oshan, T.M.; Li, Z.; Kang, W.; Wolf, L.J.; Fotheringham, A.S. MGWR: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale. ISPRS Int. J. Geo-Inf. 2019, 8, 269. [Google Scholar] [CrossRef]
- Al-Sayed, K.; Turner, A.; Hillier, B.; Lida, S.; Penn, A. Space Syntax Methodology; Bartlett School of Architecture, UCL: London, UK, 2014. [Google Scholar]
- Jin, Y.; Liu, X.; Song, H.; Zheng, J.; Pan, J. General fractal topography: An open mathematical framework to characterize and model mono-scale-invariances. Nonlinear Dyn. 2019, 96, 2413–2436. [Google Scholar] [CrossRef]
- Huang, J.; Kim, J.; Agrawal, N.; Sudarsan, A.P.; Maxim, J.E.; Jayaraman, A.; Ugaz, V.M. Rapid fabrication of bio-inspired 3D microfluidic vascular networks. Adv. Mater. 2009, 21, 3567–3571. [Google Scholar] [CrossRef]
- Lim, A.E.; Goh, S. Effect of Microchannel Diameter on Electroosmotic Flow Hysteresis. Energies 2023, 16, 2154. [Google Scholar] [CrossRef]
- Arseniou, G.; MacFarlane, D.W.; Seidel, D. Woody Surface Area Measurements with Terrestrial Laser Scanning Relate to the Anatomical and Structural Complexity of Urban Trees. Remote Sens. 2021, 13, 3153. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, W.; Nie, M. Scale Characteristics and Optimization of Park Green Space in Megacities Based on the Fractal Measurement Model: A Case Study of Beijing, Shanghai, Guangzhou, and Shenzhen. Sustainability 2021, 13, 8554. [Google Scholar] [CrossRef]
- Man, X.; Chen, Y. Fractal-Based Modeling and Spatial Analysis of Urban Form and Growth: A Case Study of Shenzhen in China. ISPRS Int. J. Geo-Inf. 2020, 9, 672. [Google Scholar] [CrossRef]
- Song, Z.; Jin, W.; Jiang, G.; Li, S.; Ma, W. Typical and atypical multifractal systems of urban spaces—Using construction land in Zhengzhou from 1988 to 2015 as an example. Chaos Solitons Fractals 2021, 145, 110732. [Google Scholar] [CrossRef]
- Christopher, S. Multisensor Characterization of Urban Morphology and Network Structure. Remote Sens. 2019, 11, 2162. [Google Scholar]
- Ossola, A.; Locke, D.; Lin, B.; Minor, E. Greening in style: Urban form, architecture and the structure of front and backyard vegetation. Landsc. Urban Plan 2019, 185, 141–157. [Google Scholar] [CrossRef]
- Wu, J.; Wang, S.; Zhang, Y.; Zhang, A.; Xia, C. Urban landscape as a spatial representation of land rent: A quantitative analysis. Comput. Environ. Urban 2019, 74, 62–73. [Google Scholar] [CrossRef]
- Wentz, E.A.; York, A.M.; Alberti, M.; Conrow, L.; Fischer, H.; Inostroza, L.; Jantz, C.; Pickett, S.T.; Seto, K.C.; Taubenböck, H. Six fundamental aspects for conceptualizing multidimensional urban form: A spatial mapping perspective. Landsc. Urban Plan 2018, 179, 55–62. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, H.; Sun, J.; Tang, R.; Cai, B.; Song, X.; Huang, X.; Huang, J.; Fan, Z. Spatio-temporal characteristics of soil Cd pollution and its influencing factors: A Geographically and temporally weighted regression (GTWR) method. J. Hazard. Mater. 2023, 446, 130613. [Google Scholar] [CrossRef] [PubMed]
Model Parameter | Results of 2D_FD Model | Results of 3D_FD Model | ||||
---|---|---|---|---|---|---|
OLS Regression | GWR Regression | MGWR Regression | OLS Regression | GWR Regression | MGWR Regression | |
RSS | 49.692 | 31.099 | 25.001 | 51.430 | 33.743 | 28.982 |
AIC | 279.619 | 251.010 | 224.071 | 287.050 | 259.984 | 239.572 |
AICc | 282.586 | 265.355 | 242.779 | 290.266 | 272.341 | 253.762 |
R2 | 0.685 | 0.803 | 0.842 | 0.674 | 0.786 | 0.817 |
Adjusted R2 | 0.673 | 0.759 | 0.800 | 0.659 | 0.743 | 0.776 |
Dependent Variable: 2D_FD | Dependent Variable: 3D_FD | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Variable | Mean | STD | Min | Median | Max | Variable | Mean | STD | Min | Median | Max |
Intercept | 0.048 | 0.177 | −0.377 | 0.04 | 0.366 | Intercept | −0.004 | 0.171 | −0.39 | 0.020 | 0.349 |
X1 | −0.08 | 0.145 | −0.458 | −0.076 | 0.29 | X1 | −0.146 | 0.123 | −0.489 | −0.120 | 0.086 |
X2 | 0.263 | 0.044 | 0.185 | 0.260 | 0.367 | X2 | 0.295 | 0.069 | 0.142 | 0.300 | 0.420 |
X3 | 0.537 | 0.128 | 0.222 | 0.535 | 0.808 | X3 | 0.507 | 0.008 | 0.495 | 0.505 | 0.521 |
X4 | 0.257 | 0.049 | 0.178 | 0.258 | 0.329 | X4 | 0.153 | 0.083 | 0.032 | 0.137 | 0.295 |
X5 | 0.249 | 0.012 | 0.228 | 0.247 | 0.277 | X5 | 0.125 | 0.028 | 0.080 | 0.121 | 0.183 |
X6 | 0.258 | 0.024 | 0.229 | 0.256 | 0.294 | X6 | 0.160 | 0.042 | 0.103 | 0.162 | 0.220 |
X7 | Not significant | X7 | 0.196 | 0.012 | 0.178 | 0.195 | 0.219 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Ping, X.; Fan, Q.; Li, C. Measurement of 2D and 3D Fractal Features of Urban Morphology from an Architectural View and Its Influencing Factors. Fractal Fract. 2024, 8, 138. https://doi.org/10.3390/fractalfract8030138
Zhang C, Ping X, Fan Q, Li C. Measurement of 2D and 3D Fractal Features of Urban Morphology from an Architectural View and Its Influencing Factors. Fractal and Fractional. 2024; 8(3):138. https://doi.org/10.3390/fractalfract8030138
Chicago/Turabian StyleZhang, Chenming, Xiaoying Ping, Qindong Fan, and Chunlin Li. 2024. "Measurement of 2D and 3D Fractal Features of Urban Morphology from an Architectural View and Its Influencing Factors" Fractal and Fractional 8, no. 3: 138. https://doi.org/10.3390/fractalfract8030138
APA StyleZhang, C., Ping, X., Fan, Q., & Li, C. (2024). Measurement of 2D and 3D Fractal Features of Urban Morphology from an Architectural View and Its Influencing Factors. Fractal and Fractional, 8(3), 138. https://doi.org/10.3390/fractalfract8030138