Dynamic Fractional-Order Grey Prediction Model with GWO and MLP for Forecasting Overseas Talent Mobility in China
Abstract
:1. Introduction
1.1. Background
1.2. Overseas Talent Mobility Prediction
1.3. Grey Models
1.3.1. Basic Principles of Grey Forecasting Models
1.3.2. Advancements in Fractional-Order Grey Prediction Models
1.4. Contributions
2. Methodology
2.1. FGM(1,1)
2.2. GWO
2.3. MLP
2.4. Proposed MGDFGM(1,1)
2.5. Model Evaluation Criteria
3. Empirical Results
3.1. Data Description
3.2. Experiment 1: Students Studying Abroad
3.3. Experiment 2: Returned Overseas Students
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, D.; Zheng, W.; Lu, J.; Liu, X.; Wright, M. Forgotten or Not? Home Country Embeddedness and Returnee Entrepreneurship. J. World Bus. 2019, 54, 1–13. [Google Scholar] [CrossRef]
- Xiong, W.; Mok, K.H. Critical Reflections on Mainland China and Taiwan Overseas Returnees’ Job Searches and Career Development Experiences in the Rising Trend of Anti-Globalisation. High. Educ. Policy 2020, 33, 413–436. [Google Scholar] [CrossRef]
- Dai, O.; Liu, X. Returnee Entrepreneurs and Firm Performance in Chinese High-Technology Industries. Int. Bus. Rev. 2009, 18, 373–386. [Google Scholar] [CrossRef]
- Li, W.; Sadowski-Smith, C.; Yu, W. Return Migration and Transnationalism: Evidence from Highly Skilled Academic Migration. Pap. Appl. Geogr. 2018, 4, 243–255. [Google Scholar] [CrossRef]
- Zhang, C.; Guan, J. Returnee Policies in China: Does a Strategy of Alleviating the Financing Difficulty of Returnee Firms Promote Innovation? Technol. Forecast. Soc. Chang. 2021, 164, 120509. [Google Scholar] [CrossRef]
- Xu, H.; Yu, Z.; Yang, J.; Xiong, H.; Zhu, H. Dynamic Talent Flow Analysis with Deep Sequence Prediction Modeling. IEEE Trans. Knowl. Data Eng. 2019, 31, 1926–1939. [Google Scholar] [CrossRef]
- Fernandes, J. Trends in International Student Mobility: A Study of the Relationship between the UK and China and the Chinese Student Experience in the UK. Scott. Educ. Rev. 2006, 38, 133–144. [Google Scholar] [CrossRef]
- Iannelli, C.; Huang, J. Trends in Participation and Attainment of Chinese Students in UK Higher Education. Stud. High. Educ. 2014, 39, 805–822. [Google Scholar] [CrossRef]
- Knight, J. Student Mobility and Internationalization: Trends and Tribulations. Res. Comp. Int. Educ. 2012, 7, 20–33. [Google Scholar] [CrossRef]
- Lin, S.; Liu, J. Has Excess Epidemic Prevention Changed Chinese Students’ Willingness to Study Abroad: Three Rounds of the Same Volume Survey Based on the New “Push–Pull” Theory. Humanit. Soc. Sci. Commun. 2023, 10, 662. [Google Scholar] [CrossRef]
- Mok, K.H.; Xiong, W.; Ke, G.; Cheung, J.O.W. Impact of COVID-19 Pandemic on International Higher Education and Student Mobility: Student Perspectives from Mainland China and Hong Kong. Int. J. Educ. Res. 2021, 105, 101718. [Google Scholar] [CrossRef] [PubMed]
- Yang, M. What Attracts Mainland Chinese Students to Australian Higher Education. Innov. Dev. 2007, 4, 1–12. [Google Scholar]
- Ozturgut, O. Best Practices in Recruiting and Retaining International Students in the U.S. Curr. Issues Educ. 2013, 16. [Google Scholar]
- Ke, P.; Wu, G. Study on Prediction of the Number of Study Abroad Based on GM (1.1) Model. Value Eng. 2012, 31, 318–319. [Google Scholar] [CrossRef]
- Li, Q. The Development of China’s Study Abroad Education and It’s Countermeasures. J. Syst. Sci. Inf. 2010, 8, 87–96. [Google Scholar]
- Ren, Y.; Jiang, P. Forecasting the Number of Students Studying Abroad and Returned Students Studying Abroad Based on Grey Forecasting Model. J. Manag. Decis. Sci. 2020, 3, 41–53. [Google Scholar] [CrossRef]
- Jiang, P.; Wu, G.; Hu, Y.-C.; Zhang, X.; Ren, Y. Novel Fractional Grey Prediction Model with the Change-Point Detection for Overseas Talent Mobility Prediction. Axioms 2022, 11, 432. [Google Scholar] [CrossRef]
- Feng, Z.; Yu, D. Prediction of abroad Chinese students and its impact on household consumption. J. Nanjing Univ. Inf. Sci. Technol. 2014, 6, 369–373. [Google Scholar] [CrossRef]
- Totska, O. Modeling the migration of ukrainians to study abroad. Sci. J. Pol. Univ. 2018, 28, 11–16. [Google Scholar] [CrossRef]
- Yang, C.; Duan, X. Prediction of the number of students studying abroad in China: Based on the time series prediction method. Sci. Technol. Economy Mark. 2016, 1, 119–121. [Google Scholar]
- Yang, S.; Chen, H.-C.; Chen, W.-C.; Yang, C.-H. Forecasting Outbound Student Mobility: A Machine Learning Approach. PLoS ONE 2020, 15, e0238129. [Google Scholar] [CrossRef] [PubMed]
- Bijak, J.; Disney, G.; Findlay, A.M.; Forster, J.J.; Smith, P.W.F.; Wiśniowski, A. Assessing Time Series Models for Forecasting International Migration: Lessons from the United Kingdom. J. Forecast. 2019, 38, 470–487. [Google Scholar] [CrossRef]
- Li, Z. Forecast and Analysis of Reasons for Changes in the Number of Students Studying Abroad. Highlights Sci. Eng. Technol. 2022, 24, 107–118. [Google Scholar] [CrossRef]
- Hu, Z. Research on Combination Forecasting of the Number of Students Studying Abroad Based on L1 Norm. J. Chongqing Technol. Bus. Univ. Nat. Sci. Ed. 2022, 39, 61–69. [Google Scholar] [CrossRef]
- Wei, Y. Prediction of international students and returnees based on grey neural network model. Bus. Econ. 2010, 4, 4–6+122. [Google Scholar]
- Hu, Y.-C.; Wu, G.; Jiang, P. Tourism Demand Forecasting Using Nonadditive Forecast Combinations. J. Hosp. Tour. Res. 2023, 47, 775–799. [Google Scholar] [CrossRef]
- Xie, N.; Wang, R. A Historic Review of Grey Forecasting Models. J. Grey Syst. 2017, 29, 1. [Google Scholar]
- Wei, B.; Xie, N. Parameter Estimation for Grey System Models: A Nonlinear Least Squares Perspective. Commun. Nonlinear Sci. 2021, 95, 105653. [Google Scholar] [CrossRef]
- Xiangmei, M.; Leping, T.; Chen, Y.; Lifeng, W. Forecast of Annual Water Consumption in 31 Regions of China Considering GDP and Population. Sustain. Prod. Consum. 2021, 27, 713–736. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, X.; Cai, Y.; Yuan, H.; Deng, Y. Application of a Novel Hybrid Accumulation Grey Model to Forecast Total Energy Consumption of Southwest Provinces in China. Grey Syst. Theory Appl. 2023, 13, 629–656. [Google Scholar] [CrossRef]
- Mao, Q.; Xiao, X.; Gao, M.; Wang, X.; He, Q. Nonlinear Fractional Order Grey Model of Urban Traffic Flow Short-Term Prediction. J. Grey Syst. 2018, 30, 1–17. [Google Scholar]
- Guo, X.; Li, J.; Liu, S.; Xie, N.; Yang, Y.; Zhang, H. Analyzing the Aging Population and Density Estimation of Nanjing by Using a Novel Grey Self-Memory Prediction Model Under Fractional-Order Accumulation. J. Grey Syst. 2022, 34, 34–52. [Google Scholar]
- Li, X.; Zhao, Z.; Zhao, Y.; Zhou, S.; Zhang, Y. Prediction of Energy-Related Carbon Emission Intensity in China, America, India, Russia, and Japan Using a Novel Self-Adaptive Grey Generalized Verhulst Model. J. Clean. Prod. 2023, 423, 138656. [Google Scholar] [CrossRef]
- Wu, L.; Liu, S.; Yao, L.; Yan, S.; Liu, D. Grey System Model with the Fractional Order Accumulation. Commun. Nonlinear Sci. 2013, 18, 1775–1785. [Google Scholar] [CrossRef]
- Wu, L.; Gao, X.; Xiao, Y.; Yang, Y.; Chen, X. Using a Novel Multi-Variable Grey Model to Forecast the Electricity Consumption of Shandong Province in China. Energy 2018, 157, 327–335. [Google Scholar] [CrossRef]
- Hu, Y.-C. Forecast Combination Using Grey Prediction with Fuzzy Integral and Time-Varying Weighting in Tourism. Grey Syst. Theory Appl. 2023, 13, 808–827. [Google Scholar] [CrossRef]
- Yang, Y.; Xiong, J.; Zhao, L.; Wang, X.; Hua, L.; Wu, L. A Novel Method of Blockchain Cryptocurrency Price Prediction Using Fractional Grey Model. Fractal Fract. 2023, 7, 547. [Google Scholar] [CrossRef]
- Gao, M.; Yang, H.; Xiao, Q.; Goh, M. A Novel Fractional Grey Riccati Model for Carbon Emission Prediction. J. Clean. Prod. 2021, 282, 124471. [Google Scholar] [CrossRef]
- Ma, X.; Xie, M.; Wu, W.; Zeng, B.; Wang, Y.; Wu, X. The Novel Fractional Discrete Multivariate Grey System Model and Its Applications. Appl. Math. Model. 2019, 70, 402–424. [Google Scholar] [CrossRef]
- Pu, B.; Nan, F.; Zhu, N.; Yuan, Y.; Xie, W. UFNGBM (1,1): A Novel Unbiased Fractional Grey Bernoulli Model with Whale Optimization Algorithm and Its Application to Electricity Consumption Forecasting in China. Energy Rep. 2021, 7, 7405–7423. [Google Scholar] [CrossRef]
- Yan, C.; Wu, L.; Liu, L.; Zhang, K. Fractional Hausdorff Grey Model and Its Properties. Chaos Solitons Fractals 2020, 138, 109915. [Google Scholar] [CrossRef]
- Lifeng, W.U.; Sifeng, L.; Ligen, Y. Grey Model with Caputo Fractional Order Derivative. Syst. Eng. Theory Pract. 2015, 35, 1311–1316. [Google Scholar]
- Ma, X.; Wu, W.; Zeng, B.; Wang, Y.; Wu, X.; Wang, Y.; Wang, L.; Ye, L.; Ma, X.; Wu, W.; et al. A Novel Self-Adaptive Fractional Multivariable Grey Model and Its Application in Forecasting Energy Production and Conversion of China. Eng. Appl. Artif. InteL 2022, 115, 105319. [Google Scholar] [CrossRef]
- Wu, W.-Z.; Pang, H.; Zheng, C.; Xie, W.; Liu, C. Predictive Analysis of Quarterly Electricity Consumption via a Novel Seasonal Fractional Nonhomogeneous Discrete Grey Model: A Case of Hubei in China. Energy 2021, 229, 120714. [Google Scholar] [CrossRef]
- Zhicun, X.; Meng, D.; Lifeng, W. Evaluating the Effect of Sample Length on Forecasting Validity of FGM(1,1). Alex. Eng. J. 2020, 59, 4687–4698. [Google Scholar] [CrossRef]
- Hu, Y.-C. Forecasting Tourism Demand Using Fractional Grey Prediction Models with Fourier Series. Ann. Oper. Res. 2021, 300, 467–491. [Google Scholar] [CrossRef]
- Lao, T.; Chen, X.; Zhu, J. The Optimized Multivariate Grey Prediction Model Based on Dynamic Background Value and Its Application. Complexity 2021, 2021, 6663773. [Google Scholar] [CrossRef]
- Zeng, B.; Tan, Y.; Xu, H.; Quan, J.; Wang, L.; Zhou, X. Forecasting the Electricity Consumption of Commercial Sector in Hong Kong Using a Novel Grey Dynamic Prediction Model. J. Grey Syst. 2018, 30, 157–172. [Google Scholar]
- Faris, H.; Aljarah, I.; Al-Betar, M.A.; Mirjalili, S. Grey Wolf Optimizer: A Review of Recent Variants and Applications. Neural Comput. Appl. 2018, 30, 413–435. [Google Scholar] [CrossRef]
- Xie, W.; Wu, W.-Z.; Liu, C.; Zhang, T.; Dong, Z. Forecasting Fuel Combustion-Related CO2 Emissions by a Novel Continuous Fractional Nonlinear Grey Bernoulli Model with Grey Wolf Optimizer. Environ. Sci. Pollut. Res. 2021, 28, 38128–38144. [Google Scholar] [CrossRef]
- Gan, K.; Sun, S.; Wang, S.; Wei, Y. A Secondary-Decomposition-Ensemble Learning Paradigm for Forecasting PM2.5 Concentration. Atmos. Pollut. Res. 2018, 9, 989–999. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Dehghani, M.; Riahi-Madvar, H.; Hooshyaripor, F.; Mosavi, A.; Shamshirband, S.; Zavadskas, E.; Chau, K. Prediction of Hydropower Generation Using Grey Wolf Optimization Adaptive Neuro-Fuzzy Inference System. Energies 2019, 12, 289. [Google Scholar] [CrossRef]
- Iliyasu, A.M.; Fouladinia, F.; Salama, A.S.; Roshani, G.H.; Hirota, K. Intelligent Measurement of Void Fractions in Homogeneous Regime of Two Phase Flows Independent of the Liquid Phase Density Changes. Fractal Fract. 2023, 7, 179. [Google Scholar] [CrossRef]
- Xing, G.; Sun, S.; Bi, D.; Guo, J.; Wang, S. Seasonal and Trend Forecasting of Tourist Arrivals: An Adaptive Multiscale Ensemble Learning Approach. J. Tour. Res. 2022, 24, 425–442. [Google Scholar] [CrossRef]
- Xie, G.; Wang, S.; Zhao, Y.; Lai, K.K. Hybrid Approaches Based on LSSVR Model for Container Throughput Forecasting: A Comparative Study. Appl. Soft Comput. 2013, 13, 2232–2241. [Google Scholar] [CrossRef]
- Koo, E.; Kim, G. Centralized Decomposition Approach in LSTM for Bitcoin Price Prediction. Expert. Syst. Appl. 2024, 237, 121401. [Google Scholar] [CrossRef]
- Yang, C.-H.; Chang, P.-Y. Forecasting the Demand for Container Throughput Using a Mixed-Precision Neural Architecture Based on CNN–LSTM. Mathematics 2020, 8, 1784. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 3rd ed.; OTexts: Melbourne, Australia, 2021. [Google Scholar]
- Lewis, C.D. Industrial and Business Forecasting Methods; Butterworth Scientific: London, UK, 1982. [Google Scholar]
MAPE | Prediction Accuracy |
---|---|
<10% | High |
10%~20% | Good |
20%~50% | Reasonable |
≥50% | Inaccurate |
Year | Raw Data | NAÏVE | ARIMA | GM(1,1) | FGM(1,1)0.996 * | MGDFGM(1,1) | LSSVR | MLP | LSTM |
---|---|---|---|---|---|---|---|---|---|
2000 | 38,989 | 38,972 | 38,989 | 38,989 | 38,989 | ||||
2001 | 83,973 | 38,989 | 83,925 | 84,348 | 83,973 | 83,967 | 71,366.6 | ||
2002 | 125,179 | 83,973 | 128,957 | 96,053 | 95,786 | 125,021 | 112,968 | ||
2003 | 117,307 | 125,179 | 166,385 | 109,382 | 109,181 | 117,267 | 121,492 | 152,380 | |
2004 | 114,682 | 117,307 | 109,435 | 124,561 | 124,407 | 114,509 | 146,178 | 131,131 | 144,757 |
2005 | 118,515 | 114,682 | 112,057 | 141,846 | 141,727 | 117,996 | 154,107 | 135,170 | 142,203 |
2006 | 134,000 | 118,515 | 122,348 | 161,530 | 161,437 | 133,996 | 152,883 | 134,678 | 145,932 |
2007 | 144,000 | 134,000 | 149,485 | 183,945 | 183,871 | 143,846 | 162,169 | 156,904 | 160,957 |
2008 | 179,800 | 144,000 | 154,000 | 209,471 | 209,408 | 179,573 | 174,756 | 163,657 | 170,785 |
2009 | 229,300 | 179,800 | 215,600 | 238,538 | 238,477 | 229,223 | 203,112 | 216,073 | 206,504 |
2010 | 284,700 | 229,300 | 278,800 | 271,640 | 271,570 | 284,403 | 247,008 | 269,823 | 257,169 |
2011 | 339,700 | 284,700 | 340,100 | 309,335 | 309,245 | 340,434 | 306,115 | 330,792 | 315,399 |
2012 | 399,600 | 339,700 | 394,700 | 352,261 | 352,135 | 399,299 | 369,108 | 386,585 | 374,476 |
2013 | 413,900 | 399,600 | 459,500 | 401,143 | 400,964 | 413,979 | 432,742 | 449,600 | 439,746 |
2014 | 459,800 | 413,900 | 428,200 | 456,809 | 456,553 | 460,217 | 471,384 | 437,233 | 455,448 |
2015 | 523,700 | 459,800 | 505,700 | 520,200 | 519,840 | 524,651 | 509,673 | 505,371 | 506,007 |
2016 | 544,500 | 523,700 | 587,600 | 592,387 | 591,889 | 541,626 | 552,778 | 569,180 | 576,499 |
2017 | 608,400 | 544,500 | 565,300 | 674,591 | 673,915 | 576,005 | 583,651 | 568,450 | 599,465 |
2018 | 662,100 | 608,400 | 586,100 | 768,203 | 767,298 | 614,180 | 610,998 | 600,414 | 603,235 |
2019 | 703,500 | 662,100 | 606,900 | 874,805 | 873,611 | 652,201 | 629,872 | 629,747 | 607,004 |
fit-MAPE | 14.926% | 7.086% | 10.385% | 10.365% | 0.140% | 10.288% | 6.560% | 11.004% | |
fit-RMSE | 39,040.076 | 22,790.422 | 25,839.728 | 25,809.518 | 808.903 | 23,765.415 | 18,291.157 | 22,414.081 | |
fit-STD | 12.831% | 9.509% | 8.414% | 8.435% | 0.144% | 8.665% | 4.060% | 7.811% | |
pre-MAPE | 8.166% | 10.765% | 17.085% | 16.946% | 6.618% | 7.417% | 8.789% | 8.025% | |
pre-RMSE | 53,792.379 | 75,200.111 | 122,453.680 | 121,513.661 | 44,636.843 | 53,681.188 | 60,112.866 | 65,463.477 | |
pre-STD | 1.886% | 2.760% | 5.550% | 5.526% | 0.915% | 2.621% | 1.642% | 5.038% |
Year | Raw Data | NAÏVE | ARIMA | GM(1,1) | FGM(1,1)0.068 * | MGDFGM(1,1) | LSSVR | MLP | LSTM |
---|---|---|---|---|---|---|---|---|---|
2000 | 9121 | 9117 | 9121 | 9121 | 9121 | ||||
2001 | 12,243 | 9121 | 12,248 | 34,537 | 6789 | 12,241 | |||
2002 | 17,945 | 12,243 | 15,365 | 42,486 | 12,794 | 17,970 | |||
2003 | 20,152 | 17,945 | 23,647 | 52,263 | 20,152 | 20,132 | 19,127 | ||
2004 | 24,726 | 20,152 | 22,359 | 64,291 | 29,216 | 24,722 | 44,202 | 24,340 | 37,403 |
2005 | 34,987 | 24,726 | 29,300 | 79,087 | 40,354 | 35,090 | 50,551 | 35,501 | 45,467 |
2006 | 42,000 | 34,987 | 45,248 | 97,288 | 53,991 | 42,024 | 60,850 | 42,709 | 55,631 |
2007 | 44,000 | 42,000 | 49,013 | 119,678 | 70,622 | 44,011 | 70,737 | 51,589 | 65,230 |
2008 | 69,300 | 44,000 | 46,000 | 147,221 | 90,830 | 69,448 | 79,232 | 68,560 | 78,745 |
2009 | 108,300 | 69,300 | 94,600 | 181,102 | 115,304 | 108,317 | 100,032 | 101,068 | 97,266 |
2010 | 134,800 | 108,300 | 147,300 | 222,781 | 144,852 | 134,715 | 133,752 | 136,911 | 119,511 |
2011 | 186,200 | 134,800 | 161,300 | 274,052 | 180,425 | 185,155 | 169,655 | 180,479 | 153,151 |
2012 | 272,900 | 186,200 | 237,600 | 337,123 | 223,145 | 271,950 | 224,884 | 277,007 | 212,751 |
2013 | 353,500 | 272,900 | 359,600 | 414,708 | 274,327 | 350,066 | 302,361 | 353,513 | 282,737 |
2014 | 364,800 | 353,500 | 434,100 | 510,149 | 335,519 | 360,460 | 378,376 | 364,754 | 351,406 |
2015 | 409,100 | 364,800 | 376,100 | 627,554 | 408,538 | 407,814 | 418,206 | 409,247 | 420,185 |
2016 | 432,500 | 409,100 | 453,400 | 771,979 | 495,512 | 431,939 | 444,275 | 432,387 | 472,462 |
2017 | 480,900 | 432,500 | 455,900 | 949,642 | 598,942 | 520,592 | 450,457 | 428,860 | 500,388 |
2018 | 519,400 | 480,900 | 479,300 | 1,168,190 | 721,753 | 535,106 | 454,004 | 456,216 | 471,904 |
2019 | 580,300 | 519,400 | 502,700 | 1,437,040 | 867,375 | 621,056 | 446,190 | 455,069 | 460,205 |
fit-MAPE | 20.69% | 11.31% | 98.29% | 19.20% | 0.28% | 23.17% | 2.93% | 20.96% | |
fit-RMSE | 37,402.22 | 23,277.02 | 120,732.29 | 30,798.67 | 1471.37 | 23,955.40 | 3448.65 | 31,584.52 | |
fit-STD | 10.89% | 7.87% | 53.73% | 16.07% | 0.34% | 24.49% | 4.40% | 14.99% | |
pre-MAPE | 9.32% | 8.76% | 123.34% | 37.66% | 6.10% | 14.01% | 14.86% | 11.30% | |
pre-RMSE | 50,111.94 | 52,455.60 | 676,917.27 | 213,925.81 | 34,074.24 | 87,918.34 | 86,377.43 | 75,406.59 | |
pre-STD | 1.36% | 3.42% | 20.51% | 10.22% | 2.23% | 6.92% | 4.79% | 6.96% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, G.; Fu, H.; Jiang, P.; Chi, R.; Cai, R. Dynamic Fractional-Order Grey Prediction Model with GWO and MLP for Forecasting Overseas Talent Mobility in China. Fractal Fract. 2024, 8, 217. https://doi.org/10.3390/fractalfract8040217
Wu G, Fu H, Jiang P, Chi R, Cai R. Dynamic Fractional-Order Grey Prediction Model with GWO and MLP for Forecasting Overseas Talent Mobility in China. Fractal and Fractional. 2024; 8(4):217. https://doi.org/10.3390/fractalfract8040217
Chicago/Turabian StyleWu, Geng, Haiwei Fu, Peng Jiang, Rui Chi, and Rongjiang Cai. 2024. "Dynamic Fractional-Order Grey Prediction Model with GWO and MLP for Forecasting Overseas Talent Mobility in China" Fractal and Fractional 8, no. 4: 217. https://doi.org/10.3390/fractalfract8040217
APA StyleWu, G., Fu, H., Jiang, P., Chi, R., & Cai, R. (2024). Dynamic Fractional-Order Grey Prediction Model with GWO and MLP for Forecasting Overseas Talent Mobility in China. Fractal and Fractional, 8(4), 217. https://doi.org/10.3390/fractalfract8040217