On Some Impulsive Fractional Integro-Differential Equation with Anti-Periodic Conditions
Abstract
:1. Introduction
- The main motivation for this work is to use the C-HFD to present a new class of IF-IDE with anti-periodic BC;
- We investigate the existence and uniqueness of the solutions of (1)–(3) using Schauder’s FPT, Krasnoselkii’s FPT, and the Banach Contraction Principle;
- We extend the results studied in [38] by including the C-HFD, impulsive conditions, and nonlinear integrals.
2. Preliminaries
3. Main Results
- : ∃ a constant , ∀ for and each .
- : ∃ a constant ∀ ,
- then the problem (1)–(2) has at least one solution on .
4. Example
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hadamard, J. Essai Sur l’Etude des Fonctions Donnees par Leur Developpement de Taylor. J. Pure Appl. Math. 1892, 8, 101–186. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Differential Equations; John Wiley: New York, NY, USA, 1993. [Google Scholar]
- Gambo, Y. On Caputo modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2014, 2014, 10. [Google Scholar] [CrossRef]
- Gong, Z.Q.; Qian, D.L.; Li, C.P.; Guo, P. On the Hadamard type fractional differential system. In Fractional Dynamics and Control; Baleanu, D., Machado, J.A.T., Eds.; Springer: New York, NY, USA, 2012; pp. 159–171. [Google Scholar]
- Thiramanus, P.; Ntouyas, S.K.; Tariboon, J. Existence and uniqueness results for Hadamard-type fractional differential equations with nonlocal fractional integral boundary conditions. Abstr. Appl. Anal. 2014, 2014, 902054. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Meehan, M.; O’Regan, D. Fixed Point Theory and Applications; Cambridge Tracts in Mathematics, 141; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Alruwaily, Y.; Venkatachalam, K.; El-hady, E.l. Some Results on Fractional Boundary Value Problem for Caputo-Hadamard Fractional Impulsive Integro Differential Equations. Fractal Fract. 2023, 7, 884. [Google Scholar] [CrossRef]
- Boutiara, D.; Guerbati, K.; Benbachir, M. Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces. AIMS Math. 2019, 5, 259–272. [Google Scholar]
- Nain, A.; Vats, R.; Kumar, A. Caputo-Hadamard Fractional Differential Equation with Impulsive Boundary Conditions. J. Math. Model. 2021, 9, 93–106. [Google Scholar]
- Yacine, A.; Nouredine, B. Boundary value problem for Caputo-Hadamard fractional differential equations. Surv. Math. Its Appl. 2017, 12, 103–115. [Google Scholar]
- Ahmad, A.A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 2012, 142. [Google Scholar] [CrossRef]
- Abdo, M.A.; Wahash, H.A.; Panchat, S.K. Positive solutions of a fractional differential equation with integral boundary conditions. J. Appl. Math. Comput. Mech. 2018, 17, 5–15. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. On Hadamard fractional integro-differential boundary value problems. J. Appl. Math. Comput. 2015, 47, 119–131. [Google Scholar] [CrossRef]
- Ahmad, B.; Alghanmi, M.; Srivastava, H.M.; Ntouyas, S.K. The Langevin equation in terms of generalized Liouville-Caputo derivatives with nonlocal boundary conditions involving a generalized fractional integral. Mathematics 2019, 7, 533. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. Initial value problems of fractional order Hadamard type functional differential equations. Electron. J. Differ. Equ. 2015, 77, 627–637. [Google Scholar]
- Benhamida, W.; Hamani, S. Measure of Noncompactness and Caputo-Hadamard Fractional Differential Equations in Banach Spaces. Eurasian Bull. Math. 2018, 1, 98–106. [Google Scholar]
- Delbosco, D.; Rodino, L. Existence and uniqueness for a nonlinear fractional differential equation. J. Math. Anal. Appl. 1996, 204, 609–625. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Tian, Y.; Bai, Z. Impulsive Boundary Value Problem for Differential Equations with Fractional Order. Differ. Equ. Dyn. Syst. 2012, 21, 253–260. [Google Scholar] [CrossRef]
- Ahmadkhanlu, A. Existence and Uniqueness Results for a Class of Fractional Differential Equations with an Integral Fractional Boundary Condition. Filomat 2017, 31, 1241–1249. [Google Scholar] [CrossRef]
- Alsaedi, A.; Alsulami, M.; Srivastava, H.M.; Ahmad, B.; Ntouyas, S.K. Existence theory for nonlinear third-order ordinary differential equations with nonlocal multi-point and multi-strip boundary conditions. Symmetry 2019, 11, 281. [Google Scholar] [CrossRef]
- Ardjouni, A.; Djoudi, A. Positive solutions for nonlinear Caputo-Hadamard fractional differential equations with integral boundary conditions. Open J. Math. Anal. 2019, 3, 62–69. [Google Scholar] [CrossRef]
- Baitiche, Z.; Benbachir, M.; Guerbati, K. Solvability for multi-point bvp of nonlinear fractional differential equations at resonance with three dimensional kernels. Kragujev. J. Math. 2021, 45, 761–780. [Google Scholar] [CrossRef]
- Boyd, D.W.; Wong, J.S.W. On nonlinear contractions. Proc. AMS 1969, 20, 458–464. [Google Scholar] [CrossRef]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
- Muhammad, M.O.; Rafeeq, A.S. Existence solutions of ABC-fractional differential equations with periodic and integral boundary conditions. J. Sci. Res. 2022, 14, 773–784. [Google Scholar] [CrossRef]
- Murad, S.A.; Hadid, S. Existence and uniqueness theorem for fractional differential equation with integral boundary condition. Fract. Calc. Appl. Anal. 2012, 3, 1–9. [Google Scholar]
- Murad, S.A.; Ibrahim, R.W.; Hadid, S.B. Existence and uniqueness for solution of differential equation with mixture of integer and fractional derivative. Proc. Pak. Acad. Sci. 2012, 49, 33–37. [Google Scholar]
- Berhail, A.; Tabouchez, N. Existence and uniqueness of solution for Hadamard fractional differential equations on an infinite interval with integral boundary value conditions. Appl. Math.-Notes 2020, 20, 55–69. [Google Scholar]
- Lachouri, A.; Ardjouni, A.; Djoudi, A. Existence and uniquness of mild solutions of boundary value problem for Caputo-Hadmard fractional differential equations with integral and anti-periodic conditions. J. Fract. Calc. Appl. 2021, 12, 60–68. [Google Scholar]
- Rao, S.N.; Msmali, A.H.; Singh, M.; Ahmadin, A.A. Existence and uniqueness for a system of Caputo-Hadamard fractional differential equations with multipoint boundary conditions. J. Funct. Spaces 2020, 2020, 8821471. [Google Scholar] [CrossRef]
- Benchohra, M.; Hamani, S.; Ntouyas, S.K. Boundary value problems for differential equations with fractional order. Surv. Math. Its Appl. 2008, 3, 2391–2396. [Google Scholar]
- Irguedi, A.; Nisse, K.; Hamani, S. Functional impulsive fractional differential equations involving the Caputo-Hadamard derivative and integral boundary conditions. Int. J. Anal. Appl. 2023, 21, 15. [Google Scholar] [CrossRef]
- Benhamida, W.; Hamani, S.; Henderson, J. Boundary Value Problems For Caputo-Hadamard Fractional Differential Equations. Adv. Theory Nonlinear Anal. Its Appl. 2018, 2, 138–145. [Google Scholar]
- Reunsumrit, J.; Karthikeyann, P.; Poornima, S.; Karthikeyan, K.; Sitthiwirattham, T. Analysis of existence and stability results for impulsive fractional integro-differential equations involving the AB-Caputo derivative under integral boundary conditions. Math. Probl. Eng. 2022, 2022, 5449680. [Google Scholar] [CrossRef]
- Benhamida, W.; Graef, J.R.; Hamani, S. Boundary Value Problems for Fractional Differential Equations with Integral and Anti-Periodic Conditions in a Banach Space. Prog. Fract. Differ. Appl. 2018, 4, 65–70. [Google Scholar] [CrossRef]
- Boutiara, A.; Benbachir, M.; Guerbati, K. Boundary Value Problems For Nonlinear Caputo-Hadamard Fractional Differential Equations With Hadamard Fractional Integral and Anti-Periodic Conditions. Facta Univ. 2021, 36, 735–748. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Yan, Y.; Sun, Z.Z.; Zhang, J. Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: A second-order scheme. Commun. Comput. Phys. 2017, 22, 1028–1048. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alruwaily, Y.; Venkatachalam, K.; El-hady, E.-s. On Some Impulsive Fractional Integro-Differential Equation with Anti-Periodic Conditions. Fractal Fract. 2024, 8, 219. https://doi.org/10.3390/fractalfract8040219
Alruwaily Y, Venkatachalam K, El-hady E-s. On Some Impulsive Fractional Integro-Differential Equation with Anti-Periodic Conditions. Fractal and Fractional. 2024; 8(4):219. https://doi.org/10.3390/fractalfract8040219
Chicago/Turabian StyleAlruwaily, Ymnah, Kuppusamy Venkatachalam, and El-sayed El-hady. 2024. "On Some Impulsive Fractional Integro-Differential Equation with Anti-Periodic Conditions" Fractal and Fractional 8, no. 4: 219. https://doi.org/10.3390/fractalfract8040219
APA StyleAlruwaily, Y., Venkatachalam, K., & El-hady, E. -s. (2024). On Some Impulsive Fractional Integro-Differential Equation with Anti-Periodic Conditions. Fractal and Fractional, 8(4), 219. https://doi.org/10.3390/fractalfract8040219