Fractional Calculus and Hypergeometric Functions in Complex Analysis
1. Introduction
2. Overview of the Published Papers
3. Conclusions
Acknowledgments
Conflicts of Interest
List of Contributions
- Alarifi, N.M.; Ibrahim, R.W. Specific Classes of Analytic Functions Communicated with a Q-Differential Operator Including a Generalized Hypergeometic Function. Fractal Fract. 2022, 6, 545. https://doi.org/10.3390/fractalfract6100545.
- Shi, L.; Arif, M.; Iqbal, J.; Ullah, K.; Ghufran, S.M. Sharp Bounds of Hankel Determinant on Logarithmic Coefficients for Functions Starlike with Exponential Function. Fractal Fract. 2022, 6, 645. https://doi.org/10.3390/fractalfract6110645.
- Oros, G.I.; Oros, G.; Owa, S. Subordination Properties of Certain Operators Concerning Fractional Integral and Libera Integral Operator. Fractal Fract. 2023, 7, 42. https://doi.org/10.3390/fractalfract7010042.
- Khan, M.B.; Cătaş, A.; Aloraini, N.; Soliman, M.S. Some New Versions of Fractional Inequalities for Exponential Trigonometric Convex Mappings via Ordered Relation on Interval-Valued Settings. Fractal Fract. 2023, 7, 223. https://doi.org/10.3390/fractalfract7030223.
- Khan, M.F.; AbaOud, M. Some New Applications of the Faber Polynomial Expansion Method for Generalized Bi-Subordinate Functions of Complex Order Defined by q-Calculus. Fractal Fract. 2023, 7, 270. https://doi.org/10.3390/fractalfract7030270.
- Riaz, S.; Shaba, T.G.; Xin, Q.; Tchier, F.; Khan, B.; Malik, S.N. Fekete–Szegö Problem and Second Hankel Determinant for a Class of Bi-Univalent Functions Involving Euler Polynomials. Fractal Fract. 2023, 7, 295. https://doi.org/10.3390/fractalfract7040295.
- Srivastava, H.M.; Adel, W.; Izadi, M.; El-Sayed, A.A. Solving Some Physics Problems Involving Fractional-Order Differential Equations with the Morgan-Voyce Polynomials. Fractal Fract. 2023, 7, 301. https://doi.org/10.3390/fractalfract7040301.
- Alqarni, M.Z.; Bakhet, A.; Abdalla, M. Application of the Pathway-Type Transform to a New Form of a Fractional Kinetic Equation Involving the Generalized Incomplete Wright Hypergeometric Functions. Fractal Fract. 2023, 7, 348. https://doi.org/10.3390/fractalfract7050348.
- Al-Shaikh, S.B.; Abubaker, A.A.; Matarneh, K.; Khan, M.F. Some New Applications of the q-Analogous of Differential and Integral Operators for New Subclasses of q-Starlike and q-Convex Functions. Fractal Fract. 2023, 7, 411. https://doi.org/10.3390/fractalfract7050411.
- Al-Shbeil, I.; Gong, J.; Ray, S.; Khan, S.; Khan, N.; Alaqad, H. The Properties of Meromorphic Multivalent q-Starlike Functions in the Janowski Domain. Fractal Fract. 2023, 7, 438. https://doi.org/10.3390/fractalfract7060438.
- Qureshi, M.I.; Shah, T.U.R.; Choi, J.; Bhat, A.H. Three General Double-Series Identities and Associated Reduction Formulas and Fractional Calculus. Fractal Fract. 2023, 7, 700. https://doi.org/10.3390/fractalfract7100700.
- Ahmad, A.; Gong, J.; Al-Shbeil, I.; Rasheed, A.; Ali, A.; Hussain, S. Analytic Functions Related to a Balloon-Shaped Domain. Fractal Fract. 2023, 7, 865. https://doi.org/10.3390/fractalfract7120865.
References
- Srivastava, H.M. An Introductory Overview of Fractional-Calculus Operators Based Upon the Fox-Wright and Related Higher Transcendental Functions. J. Adv. Eng. Comput. 2021, 5, 135–166. [Google Scholar] [CrossRef]
- Baleanu, D.; Agarwal, R.P. Fractional calculus in the sky. Adv. Differ. Equ. 2021, 2021, 117. [Google Scholar] [CrossRef]
- Kiryakova, V. A brief story about the operators of the generalized fractional calculus. Fract. Calc. Appl. Anal. 2008, 11, 203–220. [Google Scholar]
- Baleanu, D.; Fernandez, A. On Fractional Operators and Their Classifications. Mathematics 2019, 7, 830. [Google Scholar] [CrossRef]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oros, G.; Oros, G.I. Fractional Calculus and Hypergeometric Functions in Complex Analysis. Fractal Fract. 2024, 8, 233. https://doi.org/10.3390/fractalfract8040233
Oros G, Oros GI. Fractional Calculus and Hypergeometric Functions in Complex Analysis. Fractal and Fractional. 2024; 8(4):233. https://doi.org/10.3390/fractalfract8040233
Chicago/Turabian StyleOros, Gheorghe, and Georgia Irina Oros. 2024. "Fractional Calculus and Hypergeometric Functions in Complex Analysis" Fractal and Fractional 8, no. 4: 233. https://doi.org/10.3390/fractalfract8040233
APA StyleOros, G., & Oros, G. I. (2024). Fractional Calculus and Hypergeometric Functions in Complex Analysis. Fractal and Fractional, 8(4), 233. https://doi.org/10.3390/fractalfract8040233