Analytic Functions Related to a Balloon-Shaped Domain
Abstract
:1. Introduction
- (i)
- For , the class becomes , which was introduced by Sokol and Stankiewicz [15], and it contains those functions such that lies in the region bounded by the right half of the lemniscate of Bernoulli defined by .
- (ii)
- For , the class becomes , which was defined and investigated by Geol et al. [16]. Geometrically, a function if and only if lies in the region defined by .
2. A Set of Lemmas
3. Main Results
- I.
- Interior points of cuboid
- II.
- On the six faces of the cuboid
- III.
- On the twelve edges of the cuboid
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al-Shbeil, I.; Gong, J.; Shaba, T.G. Coefficients Inequalities for the Bi-Univalent Functions Related to q-Babalola Convolution Operator. Fractal Fract. 2023, 7, 155. [Google Scholar] [CrossRef]
- Khan, M.F.; Al-Shbeil, I.; Khan, S.; Khan, N.; Haq, W.U.; Gong, J. Applications of a q-Differential Operator to a Class of Harmonic Mappings Defined by q-Mittag–Leffler Functions. Symmetry 2022, 14, 1905. [Google Scholar] [CrossRef]
- Saliu, A.; Al-Shbeil, I.; Gong, J.; Malik, S.N.; Aloraini, N. Properties of q-Symmetric Starlike Functions of Janowski Type. Symmetry 2022, 14, 1907. [Google Scholar] [CrossRef]
- Ur Rehman, M.S.; Ahmad, Q.Z.; Al-Shbeil, I.; Ahmad, S.; Khan, A.; Khan, B.; Gong, J. Coefficient Inequalities for Multivalent Janowski Type q-Starlike Functions Involving Certain Conic Domains. Axioms 2022, 11, 494. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G. Fekete–Szegő Inequalities for Certain Subclasses of Analytic Functions Related with Nephroid Domain. J. Contemp. Math. Anal. 2022, 57, 90–101. [Google Scholar] [CrossRef]
- Khan, M.G.; Khan, B.; Gong, J.; Tchier, F.; Tawfiq, F.M.O. Applications of First-Order Differential Subordination for Subfamilies of Analytic Functions Related to Symmetric Image Domains. Symmetry 2023, 15, 2004. [Google Scholar] [CrossRef]
- Shanmugam, T.N. Convolution and Differential subordination. Int. J. Math. Math. Sci. 1989, 12, 333–340. [Google Scholar] [CrossRef]
- Padmanabhan, K.S.; Parvatham, R. Some applications of differential subordination. Bull. Aust. Math. Soc. 1985, 32, 321–330. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: New York, NY, USA, 1992; pp. 157–169. [Google Scholar]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Kumar, S.S.; Arora, K. Starlike functions associated with a petal-shaped domain. arXiv 2020, arXiv:2010.10072. [Google Scholar]
- Mendiratta, S.; Nagpal, V.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Mundula, M.; Kumar, S.S. On subfamily of starlike functions related to hyperbolic cosine function. J. Anal. 2023, 31, 2043–2062. [Google Scholar] [CrossRef]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with cardioid. Afr. Mat. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Sokol, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zeszyty Naukowe Oficyna Wydawnicza Al. Powstańców Warszawy 1996, 19, 101–105. [Google Scholar]
- Geol, P.; Kumar, S.S. Certain class of starlike functions associated with modified sigmoid function. Bull. Malays. Math. Sci. Soc. 2020, 43, 957–991. [Google Scholar] [CrossRef]
- Pommerenke, C.; Jensen, G. Univalent Functions; Vandenhoeck and Ruprecht: Gottingen, Germany, 1975. [Google Scholar]
- Riaz, A.; Raza, M.; Binyamin, M.A.; Saliu, A. The second and third Hankel determinants for starlike and convex functions associated with Three-Leaf function. Heliyon 2023, 9, 12748. [Google Scholar] [CrossRef] [PubMed]
- Bansal, D.; Maharana, S.; Prajapat, J.K. Third order Hankel determinant for certain univalent functions. J. Korean Math. Soc. 2015, 52, 1139–1148. [Google Scholar] [CrossRef]
- Krishna, D.V.; Venkateswarlu, B.; RamReddy, T. Third Hankel determinant for bounded turning functions of order alpha. J. Niger. Math. Soc. 2015, 34, 121–127. [Google Scholar] [CrossRef]
- Singh, G. On the second Hankel determinant for a new subclass of analytic functions. J. Math. Sci. Appl. 2014, 2, 1–3. [Google Scholar]
- Al-Shbeil, I.; Gong, J.; Khan, S.; Khan, N.; Khan, A.; Khan, M.F.; Goswami, A. Hankel and Symmetric Toeplitz Determinants for a New Subclass of q-Starlike Functions. Fractals Fract. 2022, 6, 658. [Google Scholar] [CrossRef]
- Orhan, H.; Deniz, E.; Raducanu, D. The Fekete–Szegö problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl. 2010, 59, 283–295. [Google Scholar]
- Hayman, W.K. On second Hankel determinant of mean univalent functions. Proc. Lond. Math. Soc. 1968, 3, 77–94. [Google Scholar] [CrossRef]
- Obradovi c, M.; Tuneski, N. Hankel determinants of second and third order for the class S of univalent functions. Math. Slovaca 2021, 71, 649–654. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, S.A.; Darus, M. Coefficient inequality for a function whose derivative has a positive real part. J. Inequal. Pure Appl. Math. 2006, 7, 50. [Google Scholar]
- Babalola, K.O. On H3(1) Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2010, 6, 1–7. [Google Scholar]
- Zaprawa, P. Third Hankel determinants for subclasses of univalent functions. Mediterr. J. Math. 2017, 14, 10. [Google Scholar] [CrossRef]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malays. Math. Sci. Soc. 2019, 42, 767–780. [Google Scholar] [CrossRef]
- Zaprawa, P.; Obradović, M.; Tuneski, N. Third Hankel determinant for univalent starlike functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2021, 49, 115. [Google Scholar] [CrossRef]
- Arif, M.; Marwa, S.; Xin, Q.; Tchier, F.; Ayaz, M.; Malik, S.N. Sharp coefficient problems of functions with bounded turning subordinated by sigmoid function. Mathematics 2022, 10, 3862. [Google Scholar] [CrossRef]
- Khan, M.G.; Ahmad, B.; Murugusundaramoorthy, G.; Chinram, R.; Wali Khan Mashwani, W.K. Applications of Modified Sigmoid Functions to a Class of Starlike Functions. J. Funct. Spaces 2020, 2020, 8844814. [Google Scholar] [CrossRef]
- Orhan, H.; ÇaĞlar, M.; Cotirla, L.-I. Third Hankel determinant for a subfamily of holomorphic functions related with lemniscate of Bernoulli. Mathematics 2023, 11, 1147. [Google Scholar] [CrossRef]
- Shi, L.; Arif, M.; Rafiq, A.; Abbas, M.; Iqbal, J. Sharp bounds of Hankel determinant on logarithmic coefficients for functions of bounded turning associated with petal-shaped domain. Mathematics 2022, 10, 1939. [Google Scholar] [CrossRef]
- Shi, L.; Arif, M.; Abbas, M.; Ihsan, M. Sharp bounds of Hankel determinant for the inverse functions on a subclass of bounded turning functions. Mediterr. J. Math. 2023, 20, 156. [Google Scholar] [CrossRef]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Abd El-Hamid, H.A.H.; Rezk, M.; Ahmed, A.M.; AlNemer, G.; Zakarya, M.; El Saify, H.A. Dynamic Inequalities in Quotients with General Kernels and Measures, J. Funct. Spaces 2020, 2020, 5417084. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Saker, S.H.; Kenawy, M.R.; Rezk, H.M. Lower Bounds on a Generalization of Cesaro Operator on Time Scales, Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 2021, 28, 345–355. [Google Scholar]
- Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in P. Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
- Ravichandran, V.; Verma, S. Bound for the fifth coefficient of certain starlike functions. Comptes Rendus Math. 2015, 353, 505–510. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, A.; Gong, J.; Al-Shbeil, I.; Rasheed, A.; Ali, A.; Hussain, S. Analytic Functions Related to a Balloon-Shaped Domain. Fractal Fract. 2023, 7, 865. https://doi.org/10.3390/fractalfract7120865
Ahmad A, Gong J, Al-Shbeil I, Rasheed A, Ali A, Hussain S. Analytic Functions Related to a Balloon-Shaped Domain. Fractal and Fractional. 2023; 7(12):865. https://doi.org/10.3390/fractalfract7120865
Chicago/Turabian StyleAhmad, Adeel, Jianhua Gong, Isra Al-Shbeil, Akhter Rasheed, Asad Ali, and Saqib Hussain. 2023. "Analytic Functions Related to a Balloon-Shaped Domain" Fractal and Fractional 7, no. 12: 865. https://doi.org/10.3390/fractalfract7120865
APA StyleAhmad, A., Gong, J., Al-Shbeil, I., Rasheed, A., Ali, A., & Hussain, S. (2023). Analytic Functions Related to a Balloon-Shaped Domain. Fractal and Fractional, 7(12), 865. https://doi.org/10.3390/fractalfract7120865