Unravelling the Fractal Complexity of Temperature Datasets across Indian Mainland
Abstract
:1. Introduction
2. Study Area and Data
3. Methodology
3.1. The Multifractal Detrended Fluctuation Analysis (MFDFA)
- Compute the ‘profile’ (X) of the series (which is the series of deviation from its mean, finally accumulated):
- Divide the profile into a certain number of non-overlapping segments of length s (scale or segment sample size). For each s, the number of non-overlapping windows is . To avoid the loss of data for the size of non-multiple of given scale size, we repeat such segmentation from the end of the data. Therefore, we finally consider non-overlapping segments for further analysis.
- Perform least square fit for each of the non-overlapping segments using a polynomial of the most appropriate order, m, to remove the local trends.
- For each segment, find the variance of the series () by considering X and its polynomial fit.
- The variance is raised for different moment orders ‘q’, and the averaging over all segments is performed to obtain the fluctuation function, Fq(s):
- FF is related to the scale (s) in the following form:
3.2. Rolling Window Multifractal (RWM) Extension Framework for Change Detection
4. Results and Discussion
4.1. MFDFA Application of Indian Temperature Datasets
4.2. Spatial Variability of Multifractal Characteristics of Temperature Datasets
4.3. Temporal Change in Multifractal Properties
4.4. Multifractal Analysis in 10-Year Rolling Window
5. Conclusions
- •
- All four types of temperature series (Tmax, Tmin, Tmean, and TDTR) in India exhibited strong long-term persistence;
- •
- Among the four temperature series, Tmin displayed the highest persistence and degree of multifractality;
- •
- The variability of multifractal characteristics was lowest in North–Central India and highest in the West Coast region;
- •
- A noticeable decrease in persistence and multifractal properties was observed in India’s temperature series following the Pacific climatic shift of 1976–1977;
- •
- The multifractal properties observed in the temperature series across India can be attributed more to the dominant influence of correlation properties rather than the shape of the probability density function;
- •
- The temporal evolution analysis of multifractality successfully captured the climatic shifts of 1976–1977 and 1998–1999;
- •
- The climatic shift in the 1980s predominantly alleviated the persistence of the Tmax series, while the shift in 1998 had a dominant effect on influencing the persistence of the Tmean series in the majority of temperature-homogeneous regions in India.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shang, P.; Kame, S. Fractal nature of time series in the sediment transport phenomenon. Chaos Solitons Fractals 2005, 26, 997–1007. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Bunde, E.K.; Rybski, D.; Barun, P.; Bunde, A.; Havlin, S. Long-term persistence and multifractality of precipitation and river runoff records. J. Geophys. Res. Atmos. 2006, 28, 1–13. [Google Scholar]
- Hurst, H.E. Long-term storage capacity of reservoirs. Trans. ASCE 1951, 116, 770–808. [Google Scholar] [CrossRef]
- Mandelbrot, B. The Fractal Geometry of Nature; WH Freeman Publishers: New York, NY, USA, 1982. [Google Scholar]
- Tessier, Y.; Lovejoy, S.; Hubert, P.; Schertzer, D.; Pecknold, S. Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. J. Geophys. Res. Atmos. 1996, 101, 26427–26440. [Google Scholar] [CrossRef]
- Pandey, G.; Lovejoy, S.; Schertzer, D. Multifractal analysis of daily river flows including extremes for basins five to two million square kilometres, one day to 75 years. J. Hydrol. 1998, 208, 62–81. [Google Scholar] [CrossRef]
- Dahlstedt, K.; Jensen, H. Fluctuation spectrum and size scaling of river flow and level. Phys. A Stat. Mech. Its Appl. 2005, 348, 596–610. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Rybski, D.; Zschiegner, S.A.; Braun, P.; Koscielny-Bunde, E.; Livina, V.; Havlin, S.; Bunde, A. Multifractality of river runoff and precipitation: Comparison of fluctuation analysis and wavelet methods. Phys. A Stat. Mech. Its Appl. 2003, 330, 240–245. [Google Scholar] [CrossRef]
- Peng, C.K.; Buldyrev, S.V.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685–1689. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Halvin, H.; Bunde, A.; Stanley, H.E. Multifractal detrended fluctuation analysis of non-stationary time series. Phys. A Stat. Mech. Its Appl. 2002, 316, 87–114. [Google Scholar] [CrossRef]
- Eichner, J.F.; Koscielny-Bunde, E.; Bunde, A.; Schellnhuber, H.J. Power-law persistence and trends in the atmosphere: A detailed study of long temperature records. Phys. Rev. E 2003, 68 Pt 2, 046133. [Google Scholar] [CrossRef]
- Mali, P. Multifractal characterization of global temperature anomalies. Theor. Appl. Climatol. 2015, 121, 641–648. [Google Scholar] [CrossRef]
- Lin, G.; Chen, X.; Fu, Z. Temporal–spatial diversities of long-range correlation for relative humidity over China. Phys. A Stat. Mech. Its Appl. 2007, 383, 585–594. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Chen, Z.; Nie, Q.; Wei, C. Multifractal and long memory of humidity process in the Tarim River Basin. Stoch. Environ. Res. Risk Assess. 2014, 28, 1383–1400. [Google Scholar] [CrossRef]
- Yu, Z.G.; Leung, Y.; Chen, Y.D.; Zhang, Q.; Anh, V.; Zhou, Y. Multifractal analyses of daily rainfall time series in Pearl River basin of China. Phys. A Stat. Mech. Its Appl. 2014, 405, 193–202. [Google Scholar] [CrossRef]
- Baranowski, P.; Krzyszczak, J.; Slawinski, C.; Hoffmann, H.; Kozyra, J.; Nieróbca, A.; Siwek, K.; Gluza, A. Multifractal analysis of meteorological time series to assess climate impacts. Clim. Res. 2015, 65, 39–52. [Google Scholar] [CrossRef]
- Gómez-Gómez, J.; Carmona-Cabezas, R.; Sánchez-López, E.; Gutiérrez de Ravé, E.; Jiménez-Hornero, F.J. Multifractal fluctuations of the precipitation in Spain (1960–2019). Chaos Solitons Fractals 2022, 157, 111909. [Google Scholar] [CrossRef]
- Koscielny-Bunde, E.; Kantelhardt, J.W.; Braun, P.; Bunde, A.; Havlin, S. Long-term persistence and multifractality of river runoff records: Detrended fluctuation studies. J. Hydrol. 2003, 322, 120–137. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.Y.; Chen, D.Y.Q.; Gemmer, M.; Yu, Z.G. Multifractal detrended fluctuation analysis of streamflow series of the Yangtze River basin, China. Hydrol. Process. 2008, 22, 4997–5003. [Google Scholar] [CrossRef]
- Zhang, Q.; Chong, Y.X.; Yu, Z.G.; Liu, C.L.; Chen, D.Y.Q. Multifractal analysis of streamflow records of the East River basin (Pearl River), China. Phys. A Stat. Mech. Its Appl. 2009, 388, 927–934. [Google Scholar] [CrossRef]
- Li, E.; Mu, X.; Zhao, G.; Gao, P. Multifractal detrended fluctuation analysis of streamflow in Yellow river basin, China. Water 2015, 7, 1670–1686. [Google Scholar] [CrossRef]
- Sankaran, A.; Krzyszczak, J.; Baranowski, P.; Devarajan Sindhu, A.; Kumar, N.P.; Lija Jayaprakash, N.; Thankamani, V.; Ali, M. Multifractal cross correlation analysis of agro-meteorological datasets (including reference evapotranspiration) of California, United States. Atmosphere 2020, 11, 1116. [Google Scholar] [CrossRef]
- Adarsh, S.; Nityanjaly, L.J.; Sarang, R.; Pham, Q.B.; Ali, M.; Nandhineekrishna, P. Multifractal Characterization and Cross correlations of Reference Evapotranspiration Time Series of India. Eur. Phys. J. Spec. Top. 2021, 230, 3845–3859. [Google Scholar] [CrossRef]
- Gómez-Gómez, J.; Ariza-Villaverde, A.B.; Gutiérrez de Ravé, E.; Jiménez-Hornero, F.J. Relationships between Reference Evapotranspiration and Meteorological Variables in the Middle Zone of the Guadalquivir River Valley Explained by Multifractal Detrended Cross-Correlation Analysis. Fractal Fract. 2023, 7, 54. [Google Scholar] [CrossRef]
- Sankaran, A.; Plocoste, T.; Nourani, V.; Vahab, S.; Salim, A. Assessment of Multifractal Fingerprints of Reference Evapotranspiration Based on Multivariate Empirical Mode Decomposition. Atmosphere 2023, 14, 1219. [Google Scholar] [CrossRef]
- Zhang, Q.; Lu, W.; Chen, S.; Liang, X. Using multifractal and wavelet analyses to determine drought characteristics: A case study of Jilin province, China. Theor. Appl. Climatol. 2016, 125, 829–840. [Google Scholar] [CrossRef]
- Adarsh, S.; Kumar, D.N.; Deepthi, B.; Gayathri, G.; Aswathy, S.S.; Bhagyasree, S. Multifractal characterization of meteorological drought in India using detrended fluctuation analysis. Int. J. Climatol. 2019, 39, 4234–4255. [Google Scholar] [CrossRef]
- Zhan, C.; Liang, C.; Zhao, L.; Jiang, S.; Niu, K.; Zhang, Y. Multifractal characteristics of multiscale drought in the Yellow River Basin, China. Phys. A Stat. Mech. Its Appl. 2023, 609, 128305. [Google Scholar] [CrossRef]
- Lin, G.; Fu, Z. A universal model to characterize different multi-fractal behaviors of daily temperature records over China. Phys. A Stat. Mech. Its Appl. 2008, 387, 573–579. [Google Scholar] [CrossRef]
- Yuan, N.; Fu, Z.; Mao, J. Different scaling behaviors in daily temperature records over China. Phys. A Stat. Mech. Its Appl. 2010, 389, 4087–4095. [Google Scholar] [CrossRef]
- Orun, M.; Kocak, K. Applicatıon of detrended fluctuation analysis to temperature data from Turkey. Int. J. Climatol. 2009, 29, 2130–2136. [Google Scholar] [CrossRef]
- Kalamaras, N.; Philippopoulos, K.; Deligiorgi, D.; Tzanis, C.G.; Karvounis, G. Multifractal scaling properties of daily air temperature time series. Chaos Solitons Fractals 2017, 98, 38–43. [Google Scholar] [CrossRef]
- Burgueño, A.; Lana, X.; Serra, C.; Martínez, M.D. Daily extreme temperature multifractals in Catalonia (NE Spain). Phys. Lett. A 2014, 378, 874–885. [Google Scholar] [CrossRef]
- Herrera-Grimaldi, P.; García-Marín, A.P.; Estévez, J. Multifractal analysis of diurnal temperature range over Southern Spain using validated datasets. Chaos 2019, 29, 063105. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Marin, A.P.; Morbidelli, R.; Saltalippi, C.; Cifrodelli, M.; Esteveza, J.; Flammini, A. On the choice of the optimal frequency analysis of annual extreme rainfall by multifractal approach. J. Hydrol. 2019, 575, 1267–1279. [Google Scholar] [CrossRef]
- da Silva, H.S.; Silva, J.R.S.; Stosic, T. Multifractal analysis of air temperature in Brazil. Phys. A Stat. Mech. Its Appl. 2020, 549, 124333. [Google Scholar] [CrossRef]
- Purnadurga, G.; Kumar, T.V.L.; Rao, K.K.; Rajasekhar, M. Investigation of temperature changes over India in association with meteorological parameters in a warming climate. Int. J. Climatol. 2018, 38, 867–877. [Google Scholar] [CrossRef]
- Yasunaka, S.; Hanawa, K. Regime Shift in the Global Sea-Surface Temperatures: Its Relation to ElNinO–Southern Oscillation Events and Dominant Variation Mode. Int. J. Climatol. 2005, 25, 913–930. [Google Scholar] [CrossRef]
- Sarkar, S.; Maity, R. Global climate shift in 1970s causes a significant worldwide increase in rainfall extremes. Sci. Rep. 2021, 11, 11574. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.K.; Rajeevan, M.; Kshirsagar, S.R. Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmos. Sci. Lett. 2009, 10, 249–254. [Google Scholar] [CrossRef]
- Shepard, D. A two-dimensional interpolation function for irregularly spaced data. In Proceedings of the 1968 23rd ACM National Conference, New York, NY, USA, 1 January 1968; pp. 517–524. [Google Scholar]
- Willmott, C.; Matsuura, K.T.A. Temperature and Precipitation: Monthly and Annual Time Series (1950–1999), at 2001. Available online: http://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.html (accessed on 11 April 2022).
- Rajeevan, M.; Bhate, J.; Kale, J.; Lal, B. Development of a High-Resolution Daily Gridded Rainfall Data for the Indian Region; Government of India, India Meteorological Department: Pune, India, 2005; Research Report 22/2005.
- Vinnarasi, R.; Dhanya, C.T.; Chakravorthy, A.; Aghakouchak, A. Unravelling diurnal asymmetry of surface temperature in different climate zones. Sci. Rep. 2017, 7, 7350. [Google Scholar] [CrossRef]
- Drożdż, S.; Oświęcimka, P. Detecting and interpreting distortions in hierarchical organization of complex time series. Phys. Rev. E 2015, 91, 030902(R). [Google Scholar] [CrossRef]
- Movahed, M.S.; Jafari, G.R.; Ghasemi, F.; Rahvar, S.; Tabar, M.R.R. Multifractal detrended fluctuation analysis of sunspot time series. J. Stat. Mech. 2006, 2, P02003. [Google Scholar] [CrossRef]
- Matia, K.; Ashkenazy, Y.; Stanley, H.E. Multifractal properties of price fluctuations of stocks and commodities. Europhys. Lett. 2003, 61, 422–428. [Google Scholar] [CrossRef]
- Hou, W.; Feng, G.; Yan, P.; Li, S. Multifractal analysis of the drought area in seven large regions of China from 1961 to 2012. Meteorol. Atmos. Phy. 2017, 130, 459–471. [Google Scholar] [CrossRef]
- Krzyszczak, J.; Baranowski, P.; Zubik, M.; Kazandjiev, V.; Georgieva, V.; Sławiński, C.; Siwek, K.; Kozyra, J.; Nieróbca, A. Multifractal characterization and comparison of meteorological time series from two climatic zones. Theor. Appl. Climatol. 2019, 137, 1811–1824. [Google Scholar] [CrossRef]
- Karatasou, S.; Santamouris, M. Multifractal analysis of high-frequency temperature time series in the urban environment. Climate 2018, 6, 50. [Google Scholar] [CrossRef]
- Miller, A.J.; Cayan, D.R.; Barnett, T.P.; Oberhuber, J.M. The 1976–77 Climate Shift of the Pacific Ocean. Oceanography 1994, 7, 21–26. [Google Scholar] [CrossRef]
- Sahana, A.S.; Ghosh, S.; Ganguly, A.; Murtugudde, R. Shift in Indian summer monsoon onset during 1976/1977. Environ. Res. Lett. 2015, 10, 054006. [Google Scholar] [CrossRef]
- Sonali, P.; Kumar, D.N. Detection and Attribution of Seasonal Temperature Changes in India with Climate Models in the CMIP5 Archive. J. Water Clim. Chang. 2016, 7, 83–102. [Google Scholar] [CrossRef]
- Drożdż, S.; Kowalski, R.; Oświȩcimka, P.; Rak, R.; Gȩbarowski, R. Dynamical Variety of Shapes in Financial Multifractality. Complexity 2018, 2018, 7015721. [Google Scholar] [CrossRef]
- Grech, G.; Mazur, Z. Can one make any crash prediction in finance using the local Hurst exponent idea? Phys. A Stat. Mech. Its Appl. 2004, 336, 133–145. [Google Scholar] [CrossRef]
- Gadgil, S.; Vinayachandran, P.N.; Francis, P.A.; Gadgil, S. Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophys. Res. Lett. 2004, 31, L12213. [Google Scholar] [CrossRef]
- Bassingthwaighte, J.B.; Beyer, R.P. Fractal correlation in heterogeneous systems. Phys. D 1991, 53, 71–84. [Google Scholar] [CrossRef]
- Chandrasekharan, S.; Saminathan, B.; Suthanthiravel, S.; Sundaram, S.K.; Hakkim, F.F.A. An investigation on the relationship between the Hurst exponent and the predictability of a rainfall time series. Meteorol. Appl. 2019, 26, 511–519. [Google Scholar] [CrossRef]
- Deidda, R.; Benzi, R.; Siccardi, F. Multifractal modeling of anomalous scaling laws in rainfall. Water Resour. Res. 1999, 35, 1853–1867. [Google Scholar] [CrossRef]
- Cadenas, E.; Campos-Amezcua, R.; Rivera, W.; Espinosa-Medina, M.A.; Méndez-Gordillo, A.R.; Rangel, E.; Tena, J. Wind speed variability study based on the Hurst coefficient and fractal dimensional analysis. Energy Sci. Eng. 2019, 7, 361–378. [Google Scholar] [CrossRef]
- García-Marín, A.P.; Estévez, J.; Medina-Cobo, M.T.; Ayuso-Muñoz, J.L. Delimiting homogeneous regions using the multifractal properties of validated rainfall data series. J. Hydrol. 2015, 529, 106–119. [Google Scholar] [CrossRef]
- Mohan, M.G.; Adarsh, S. Development of non-stationary temperature duration frequency curves for Indian mainland. Theor. Appl. Climatol. 2023, 154, 999–1011. [Google Scholar] [CrossRef]
Temperature Series | Hurst Exponent | Spectral Width | Asymmetry Index | Holder Exponent | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | CV (%) | Mean | SD | CV (%) | Mean | SD | CV (%) | Mean | SD | CV (%) | |
Tmin | 0.772 | 0.026 | 3.414 | 0.657 | 0.043 | 6.619 | 0.226 | 0.058 | 25.497 | 0.836 | 0.025 | 3.050 |
Tmax | 0.722 | 0.033 | 4.631 | 0.585 | 0.044 | 7.566 | 0.174 | 0.080 | 46.022 | 0.770 | 0.031 | 3.981 |
Tmean | 0.740 | 0.021 | 2.828 | 0.604 | 0.040 | 6.560 | 0.209 | 0.052 | 24.993 | 0.792 | 0.022 | 2.759 |
TDTR | 0.747 | 0.029 | 3.911 | 0.542 | 0.050 | 9.194 | 0.117 | 0.044 | 37.582 | 0.793 | 0.029 | 3.598 |
Temperature Series | Region | Hurst Exponent | Spectral Width | Asymmetry Index | Holder Exponent | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | CV (%) | Mean | SD | CV (%) | Mean | SD | CV (%) | Mean | SD | CV (%) | ||
Tmin | EC | 0.756 | 0.022 | 2.861 | 0.652 | 0.054 | 8.326 | 0.158 | 0.040 | 25.673 | 0.819 | 0.028 | 3.371 |
IP | 0.747 | 0.016 | 2.120 | 0.692 | 0.035 | 5.113 | 0.202 | 0.055 | 27.061 | 0.815 | 0.018 | 2.178 | |
NC | 0.793 | 0.009 | 1.176 | 0.655 | 0.027 | 4.082 | 0.273 | 0.034 | 12.479 | 0.844 | 0.013 | 1.598 | |
NE | 0.804 | 0.025 | 3.072 | 0.663 | 0.032 | 4.809 | 0.231 | 0.031 | 13.248 | 0.875 | 0.020 | 2.332 | |
NW | 0.782 | 0.015 | 1.857 | 0.627 | 0.028 | 4.514 | 0.259 | 0.043 | 16.436 | 0.851 | 0.007 | 0.798 | |
WC | 0.758 | 0.016 | 2.135 | 0.656 | 0.039 | 5.905 | 0.183 | 0.038 | 20.575 | 0.820 | 0.019 | 2.339 | |
Tmax | EC | 0.732 | 0.026 | 3.579 | 0.586 | 0.037 | 6.338 | 0.125 | 0.030 | 23.635 | 0.777 | 0.022 | 2.863 |
IP | 0.721 | 0.025 | 3.490 | 0.591 | 0.046 | 7.739 | 0.116 | 0.032 | 27.515 | 0.773 | 0.021 | 2.712 | |
NC | 0.713 | 0.024 | 3.383 | 0.591 | 0.044 | 7.507 | 0.224 | 0.079 | 35.222 | 0.762 | 0.021 | 2.700 | |
NE | 0.719 | 0.023 | 3.148 | 0.591 | 0.057 | 9.669 | 0.210 | 0.066 | 31.697 | 0.771 | 0.017 | 2.164 | |
NW | 0.725 | 0.026 | 3.580 | 0.576 | 0.039 | 6.849 | 0.228 | 0.075 | 32.835 | 0.769 | 0.024 | 3.178 | |
WC | 0.711 | 0.050 | 7.073 | 0.564 | 0.030 | 5.345 | 0.129 | 0.062 | 48.181 | 0.758 | 0.052 | 6.871 | |
Tmean | EC | 0.743 | 0.013 | 1.713 | 0.578 | 0.047 | 8.101 | 0.180 | 0.038 | 21.337 | 0.788 | 0.012 | 1.582 |
IP | 0.726 | 0.013 | 1.764 | 0.594 | 0.040 | 6.660 | 0.178 | 0.030 | 16.749 | 0.776 | 0.012 | 1.535 | |
NC | 0.743 | 0.013 | 1.765 | 0.622 | 0.025 | 3.949 | 0.252 | 0.035 | 13.763 | 0.795 | 0.014 | 1.725 | |
NE | 0.755 | 0.016 | 2.182 | 0.626 | 0.030 | 4.858 | 0.231 | 0.022 | 9.551 | 0.813 | 0.016 | 1.940 | |
NW | 0.758 | 0.013 | 1.753 | 0.611 | 0.019 | 3.092 | 0.235 | 0.039 | 16.376 | 0.810 | 0.012 | 1.504 | |
WC | 0.713 | 0.021 | 2.909 | 0.570 | 0.054 | 9.496 | 0.164 | 0.063 | 38.494 | 0.763 | 0.022 | 2.900 | |
TDTR | EC | 0.746 | 0.024 | 3.163 | 0.492 | 0.037 | 7.428 | 0.131 | 0.031 | 23.676 | 0.784 | 0.026 | 3.360 |
IP | 0.742 | 0.019 | 2.534 | 0.547 | 0.045 | 8.266 | 0.105 | 0.049 | 46.355 | 0.788 | 0.019 | 2.355 | |
NC | 0.745 | 0.010 | 1.356 | 0.570 | 0.028 | 4.835 | 0.122 | 0.040 | 32.837 | 0.794 | 0.009 | 1.158 | |
NE | 0.787 | 0.028 | 3.599 | 0.578 | 0.038 | 6.512 | 0.125 | 0.034 | 27.527 | 0.835 | 0.024 | 2.851 | |
NW | 0.732 | 0.027 | 3.629 | 0.550 | 0.020 | 3.693 | 0.102 | 0.035 | 34.241 | 0.779 | 0.026 | 3.346 | |
WC | 0.769 | 0.022 | 2.924 | 0.512 | 0.057 | 11.082 | 0.146 | 0.036 | 24.807 | 0.809 | 0.019 | 2.309 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sankaran, A.; Plocoste, T.; Geetha Raveendran Nair, A.N.; Mohan, M.G. Unravelling the Fractal Complexity of Temperature Datasets across Indian Mainland. Fractal Fract. 2024, 8, 241. https://doi.org/10.3390/fractalfract8040241
Sankaran A, Plocoste T, Geetha Raveendran Nair AN, Mohan MG. Unravelling the Fractal Complexity of Temperature Datasets across Indian Mainland. Fractal and Fractional. 2024; 8(4):241. https://doi.org/10.3390/fractalfract8040241
Chicago/Turabian StyleSankaran, Adarsh, Thomas Plocoste, Arathy Nair Geetha Raveendran Nair, and Meera Geetha Mohan. 2024. "Unravelling the Fractal Complexity of Temperature Datasets across Indian Mainland" Fractal and Fractional 8, no. 4: 241. https://doi.org/10.3390/fractalfract8040241
APA StyleSankaran, A., Plocoste, T., Geetha Raveendran Nair, A. N., & Mohan, M. G. (2024). Unravelling the Fractal Complexity of Temperature Datasets across Indian Mainland. Fractal and Fractional, 8(4), 241. https://doi.org/10.3390/fractalfract8040241