Impressive Exact Solitons to the Space-Time Fractional Mathematical Physics Model via an Effective Method
Abstract
:1. Introduction
2. Modified Extended Direct Algebraic Method
- Step 1: Considering a NLPDE:
- Case 1: if and , we have
3. Model Description and Mathematical Analysis
4. Exact Soliton Solutions
- Set 1:
- Case 2:
- Case 8:
- Case 2:
- Case 3:
- Case 2:
- Case 3:
- Case 2:
- Case 3:
- Case 2:
- Case 3:
5. Physical Behavior of Solutions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, S.; Kumar, A.; Wazwaz, A.M. New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method. Eur. Phys. J. Plus 2020, 135, 870. [Google Scholar] [CrossRef]
- Akram, G.; Sadaf, M.; Arshed, S.; Latif, R.; Inc, M.; Alzaidi, A.S. Exact traveling wave solutions of (2+1)-dimensional extended Calogero–Bogoyavlenskii–Schiff equation using extended trial equation method and modified auxiliary equation method. Opt. Quantum Electron. 2024, 56, 424. [Google Scholar] [CrossRef]
- Wang, H. Exact traveling wave solutions of the generalized fifth-order dispersive equation by the improved Fan subequation method. Math. Methods Appl. Sci. 2024, 47, 1701–1710. [Google Scholar] [CrossRef]
- Hussein, H.H.; Ahmed, H.M.; Alexan, W. Analytical soliton solutions for cubic-quartic perturbations of the Lakshmanan-Porsezian-Daniel equation using the modified extended tanh function method. Ain Shams Eng. J. 2024, 15, 102513. [Google Scholar] [CrossRef]
- Eidinejad, Z.; Saadati, R.; Li, C.; Inc, M.; Vahidi, J. The multiple exp-function method to obtain soliton solutions of the conformable Date–Jimbo–Kashiwara–Miwa equations. Int. J. Mod. Phys. B 2024, 38, 2450043. [Google Scholar] [CrossRef]
- Gasmi, B.; Moussa, A.; Mati, Y.; Alhakim, L.; Baskonus, H.M. Bifurcation and exact traveling wave solutions to a conformable nonlinear Schrödinger equation using a generalized double auxiliary equation method. Opt. Quantum Electron. 2024, 56, 18. [Google Scholar] [CrossRef]
- Ma, W.X.; Fuchssteiner, B. Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation. Int. J. Non-Linear Mech. 1996, 31, 329–338. [Google Scholar] [CrossRef]
- Ma, W.X.; Lee, J.H. A transformed rational function method and exact solutions to the (3+1)-dimensional Jimbo–Miwa equation. Chaos Solitons Fractals 2009, 42, 1356–1363. [Google Scholar] [CrossRef]
- Ma, W.X. Binary Darboux transformation of vector nonlocal reverse-time integrable NLS equations. Chaos Solitons Fractals 2024, 180, 114539. [Google Scholar] [CrossRef]
- Ghayad, M.S.; Badra, N.M.; Ahmed, H.M.; Rabie, W.B. Derivation of optical solitons and other solutions for nonlinear Schrödinger equation using modified extended direct algebraic method. Alex. Eng. J. 2023, 64, 801–811. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, J.; Ali, R.; Awwad, F.A.; AIsmail, E.A. Exploring Families of Solitary Wave Solutions for the Fractional Coupled Higgs System Using Modified Extended Direct Algebraic Method. Fractal Fract. 2023, 7, 653. [Google Scholar] [CrossRef]
- Hubert, M.B.; Betchewe, G.; Justin, M.; Doka, S.Y.; Crepin, K.T.; Biswas, A.; Zhou, Q.; Alshomrani, A.S.; Ekici, M.; Moshokoa, S.P.; et al. Optical solitons with Lakshmanan–Porsezian–Daniel model by modified extended direct algebraic method. Optik 2018, 162, 228–236. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Zaghrout, A.S.; Ahmed, H.M.; Arnous, A.H. Optical soliton perturbation of the Gerdjikov–Ivanov equation with spatio-temporal dispersion using a modified extended direct algebraic method. Optik 2022, 259, 168904. [Google Scholar] [CrossRef]
- Rabie, W.B.; Hussein, H.H.; Ahmed, H.M.; Alnahhass, M.; Alexan, W. Abundant solitons for highly dispersive nonlinear Schrödinger equation with sextic-power law refractive index using modified extended direct algebraic method. Alex. Eng. J. 2024, 86, 680–689. [Google Scholar] [CrossRef]
- Ali, M.H.; El-Owaidy, H.M.; Ahmed, H.M.; El-Deeb, A.A.; Samir, I. Solitons and other wave solutions for (2+1)-dimensional perturbed nonlinear Schrödinger equation by modified extended direct algebraic method. J. Opt. 2023, 1–9. [Google Scholar] [CrossRef]
- Alquran, M.; Ali, M.; Jadallah, H. New topological and non-topological unidirectional-wave solutions for the modified-mixed KdV equation and bidirectional-waves solutions for the Benjamin Ono equation using recent techniques. J. Ocean. Eng. Sci. 2022, 7, 163–169. [Google Scholar] [CrossRef]
- Butt, A.R.; Raza, N.; Ahmad, H.; Ozsahin, D.U.; Tchier, F. Different solitary wave solutions and bilinear form for modified mixed-KDV equation. Optik 2023, 287, 171031. [Google Scholar]
- Sulaiman, T.A.; Yel, G.; Bulut, H. M-fractional solitons and periodic wave solutions to the Hirota- Maccari system. Mod. Phys. Lett. B 2019, 33, 1950052. [Google Scholar] [CrossRef]
- Sousa, J.V.D.C.; de Oliveira, E.C. A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. Int. J. Anal. Appl. 2018, 16, 83–96. [Google Scholar]
- Tagare, S.G.; Chakrabarti, A. Solution of a generalized Korteweg—de Vries equation. Phys. Fluids 1974, 17, 1331–1332. [Google Scholar] [CrossRef]
- Das, G.C.; Tagare, S.G.; Sarma, J. Quasipotential analysis for ion-acoustic solitary waves and double layers in plasmas. Planet. Space Sci. 1998, 46, 417–424. [Google Scholar] [CrossRef]
- Das, G.C.; Tagare, S.G.; Sarma, J. Solitary wave solutions for the KdV-type equations in plasma: A new approach with the Kudryashov function. Eur. Phys. J. Plus 2021, 136, 226. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsharidi, A.K.; Junjua, M.-u.-D. Impressive Exact Solitons to the Space-Time Fractional Mathematical Physics Model via an Effective Method. Fractal Fract. 2024, 8, 248. https://doi.org/10.3390/fractalfract8050248
Alsharidi AK, Junjua M-u-D. Impressive Exact Solitons to the Space-Time Fractional Mathematical Physics Model via an Effective Method. Fractal and Fractional. 2024; 8(5):248. https://doi.org/10.3390/fractalfract8050248
Chicago/Turabian StyleAlsharidi, Abdulaziz Khalid, and Moin-ud-Din Junjua. 2024. "Impressive Exact Solitons to the Space-Time Fractional Mathematical Physics Model via an Effective Method" Fractal and Fractional 8, no. 5: 248. https://doi.org/10.3390/fractalfract8050248
APA StyleAlsharidi, A. K., & Junjua, M. -u. -D. (2024). Impressive Exact Solitons to the Space-Time Fractional Mathematical Physics Model via an Effective Method. Fractal and Fractional, 8(5), 248. https://doi.org/10.3390/fractalfract8050248