Quasi-Projective Synchronization of Discrete-Time Fractional-Order Complex-Valued BAM Fuzzy Neural Networks via Quantized Control
Abstract
:1. Introduction
2. Preparatory Knowledge and Model Description
3. Main Results
4. Numerical Simulations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Y.; Lu, Y.; He, S.; Lu, R. Synchronization control for unreliable network systems in intelligent robots. IEEE/ASME Trans. Mech. 2019, 24, 2641–2651. [Google Scholar] [CrossRef]
- Oong, H.; Isa, N. Adaptive evolutionary artificial neural networks for pattern classification. IEEE Trans. Neural Netw. 2011, 22, 1823–1836. [Google Scholar] [CrossRef]
- Li, B.; Chow, M.; Tipsuwan, Y.; Hung, J. Neural-network-based motor rolling bearing fault diagnosis. IEEE Trans. Ind. Electron. 2000, 47, 1060–1069. [Google Scholar] [CrossRef]
- Ali, M.; Narayanan, G.; Shekher, V.; Alsaedi, A.; Ahmad, B. Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays. Commun. Nonlinear Sci. Numer. Simulat. 2020, 83, 105088. [Google Scholar]
- Wang, M.; Jia, B.; Du, F.; Liu, X. Asymptotic stability of fractional difference equations with bounded time delays. Fract. Calc. Appl. Anal. 2020, 23, 571–590. [Google Scholar] [CrossRef]
- Yang, T.; Yang, L. The global stability of fuzzy cellular networks. IEEE Trans. Circuits Syst. I 1996, 43, 880–883. [Google Scholar] [CrossRef]
- Ortigueira, M.; Arnaldo, G. On the relation between the fractional Brownian motion and the fractional derivatives. Phys. Lett. A 2008, 372, 958–968. [Google Scholar] [CrossRef]
- Ioannis, D.; Dumitru, B. Caputo and related fractional derivatives in singular systems. Appl. Math. Comput. 2018, 337, 591–606. [Google Scholar]
- Mainardi, F.; Gorenflo, R. Fractional calculus and special functions. In Lecture Notes on Mathematical Physics; University of Bologna: Bologna, Italy, 2013. [Google Scholar]
- Atıcı, F.; Eloe, P. Gronwall’s inequality on discrete fractional calculus, Comput. Math. Appl. 2012, 64, 3193–3200. [Google Scholar]
- Qiu, H.; Cao, J.; Liu, H. Passivity of fractional-order coupled neural networks with interval uncertainties. Math. Comput. Simul. 2023, 205, 845–860. [Google Scholar] [CrossRef]
- Ahmadova, A.; Mahmudov, I. Existence and uniqueness results for a class of fractional stochastic neutral differential equations. Chaos Solitons Fract. 2020, 139, 110253. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, J.; Liao, Y. Exponentially stable periodic oscillation and Mittag-Leffler stabilization for fractional-order impulsive control neural networks with piecewise Caputo derivatives. IEEE Trans. Cybern. 2022, 52, 9670–9683. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Wang, Z. Mittag-Leffler synchronization of fractional-order coupled neural networks with mixed delays. Appl. Math. Comput. 2022, 430, 127303. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, Y.; Li, L.; Wu, D. Quasi-synchronization of fractional-orde complex-valued memristive recurrent neural networks with switching jumps mismatch. Neural Process. Lett. 2021, 53, 865–891. [Google Scholar] [CrossRef]
- Li, H.; Hu, C.; Zhang, L.; Jiang, H.; Cao, J. Complete and finite-time synchronization of fractional-order fuzzy neural networks via nonlinear feedback control. Fuzzy Sets Syst. 2022, 443, 50–69. [Google Scholar] [CrossRef]
- Chen, J.; Chen, B.; Zeng, Z. Global asymptotic stability and adaptive ultimate Mittag-Leffler synchronization for a fractional-order complex-valued memristive neural networks with delays. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 2519–2535. [Google Scholar] [CrossRef]
- Wang, F.; Zheng, Z. Quasi-projective synchronization of fractional order chaotic systems under input saturation. Phys. A 2019, 534, 122132. [Google Scholar] [CrossRef]
- Li, H.; Hu, C.; Cao, J.; Jiang, H.; Alsaedi, A. Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays. Neural Netw. 2019, 118, 102–109. [Google Scholar] [CrossRef]
- Pratap, A.; Raja, R.; Cao, J.; Rihan, F.; Seadawy, A. Quasi-pinning synchronization and stabilization of fractional order BAM neural networks with delays and discontinuous neuron activations. Chaos Solitons Fract. 2020, 131, 109491. [Google Scholar] [CrossRef]
- Ali, S.; Hymavathi, M. Synchronization of fractional order neutral type fuzzy cellular neural networks with discrete and distributed delays via state feedback control. Neural Process. Lett. 2021, 53, 929–957. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, G.; Fu, X. Synchronization of a network coupled with complex-variable chaotic systems. Chaos 2012, 22, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Xiong, X.; Tang, R.; Yang, X. Exponential synchronization of inertial neural networks with mixed delays via quantized pinning control. Neurocomputing 2018, 310, 165–171. [Google Scholar] [CrossRef]
- Jain, J.; Zhang, W.; Liu, X.; Shukla, M. Quantized controller for a class of uncertain nonlinear systems with dead-zone nonlinearity. ISA Trans. 2020, 107, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Kosko, B. Adaptive bidirectional associative memories. Appl. Opt. 1987, 26, 4947–4960. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Zhong, S.; Li, Y.; Xu, F. Finite-time Mittag-Leffler synchronization of fractional-order memristive BAM neural networks with time delays. Neurocomputing 2016, 219, 431–439. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Zhang, L.; Hu, C.; Jiang, H. Synchronization analysis and parameters identification of uncertain delayed fractional-order BAM neural networks. Neural Comput. Appl. 2023, 35, 1041–1052. [Google Scholar] [CrossRef]
- Wu, G.; Abdeljawad, T.; Liu, J.; Baleanu, D.; Wu, K. Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique. Nonlinear Anal. Model. Control 2019, 24, 919–936. [Google Scholar] [CrossRef]
- Jia, B.; Du, F.; Erbe, L.; Peterson, A. Asymptotic behavior of nabla half order h-difference equations. J. Appl. Anal. Comput. 2018, 8, 1707–1726. [Google Scholar]
- You, X.; Song, Q.; Zhao, Z. Global Mittag-Leffler stability and synchronization of discrete-time fractional-order complex-valued neural networks with time delay. Neural Netw. 2020, 122, 382–394. [Google Scholar] [CrossRef]
- Li, H.; Cao, J.; Hu, C.; Jiang, H.; Alsaadi, F. Synchronization analysis of discrete-time fractional-order quaternion-valued uncertain neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2023; early access. [Google Scholar] [CrossRef]
- Liu, X.; Yu, Y. Synchronization analysis for discrete fractional-order complex-valued neural networks with time delays. Neural Comput. Appl. 2021, 33, 10503–10514. [Google Scholar] [CrossRef]
- Xu, Y.; Li, H.; Zhang, L.; Hu, C.; Jiang, H. Quasi-projective and Mittag-Leffler synchronization of discrete-time fractional-order complex-valued fuzzy neural networks. Neural Process. Lett. 2023, 55, 6657–6677. [Google Scholar] [CrossRef]
- Zhao, M.; Li, H.; Zhang, L.; Hu, C.; Jiang, H. Quasi-projective synchronization of discrete-time fractional-order quaternion-valued neural networks. J. Frankl. Inst. 2023, 360, 3263–3279. [Google Scholar] [CrossRef]
- Khan, A.; Tammer, C.; Zalinescu, C. Set-Valued Optimization: An Introduction with Applications; Springer: Berlin, Germany, 2015. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Li, H.; Yang, J.; Zhang, L. Quasi-Projective Synchronization of Discrete-Time Fractional-Order Complex-Valued BAM Fuzzy Neural Networks via Quantized Control. Fractal Fract. 2024, 8, 263. https://doi.org/10.3390/fractalfract8050263
Xu Y, Li H, Yang J, Zhang L. Quasi-Projective Synchronization of Discrete-Time Fractional-Order Complex-Valued BAM Fuzzy Neural Networks via Quantized Control. Fractal and Fractional. 2024; 8(5):263. https://doi.org/10.3390/fractalfract8050263
Chicago/Turabian StyleXu, Yingying, Hongli Li, Jikai Yang, and Long Zhang. 2024. "Quasi-Projective Synchronization of Discrete-Time Fractional-Order Complex-Valued BAM Fuzzy Neural Networks via Quantized Control" Fractal and Fractional 8, no. 5: 263. https://doi.org/10.3390/fractalfract8050263
APA StyleXu, Y., Li, H., Yang, J., & Zhang, L. (2024). Quasi-Projective Synchronization of Discrete-Time Fractional-Order Complex-Valued BAM Fuzzy Neural Networks via Quantized Control. Fractal and Fractional, 8(5), 263. https://doi.org/10.3390/fractalfract8050263