Novel Estimations of Hadamard-Type Integral Inequalities for Raina’s Fractional Operators
Abstract
:1. Introduction
- 1
- If we select , then we obtain the traditional convex function.
- 2
- If we select , then we obtain the definition of a P-function.
- 3
- If χ is s-type convex on I, then the range of the function χ is .
2. Preliminaries
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mubeen, S.; Habibullah, G.M. k-Fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012, 7, 89–94. [Google Scholar]
- Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Set, E.; Akdemir, A.O.; Karaoğlan, A.; Abdeljawad, T.; Shatanawi, W. On new generalizations of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional integral operators. Axioms 2021, 10, 223. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yaldiz, H. On generalization integral inequalities for fractional integrals. Nihonkai Math. J. 2014, 25, 93–104. [Google Scholar]
- Sarikaya, M.Z.; Yaldiz, H.; Basak, N. New fractional inequalities of Ostrowski-Grüss type. Matematiche 2014, 69, 227–235. [Google Scholar] [CrossRef]
- Dahmani, Z. New inequalities in fractional integrals. Int. J. Nonlinear Sci. 2010, 9, 493–497. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Jarad, F.; Kodamasingh, B.; Kashuri, A. Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application. AIMS Math 2022, 7, 12303–12321. [Google Scholar] [CrossRef]
- Rashid, S.; İşcan, İ.; Baleanu, D.; Chu, Y.M. Generation of new fractional inequalities via n-polynomials s-type convexity with applications. Adv. Differ. Equ. 2020, 2020, 264. [Google Scholar] [CrossRef]
- Jensen, J.L.W.V. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 1906, 30, 175–193. [Google Scholar] [CrossRef]
- Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. Classical and New Inequalities in Analysis. Mathematics and Its Applications (East European Series); Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1993; Volume 61. [Google Scholar]
- Kufner, A.; John, O.; Fucik, S. Function Spaces; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1977; Volume 3. [Google Scholar]
- Hadamard, J. Etude sur les proprietes des fonctions entieres et en particulier d’une fonction considree par. J. Math. Apploquées 1893, 58, 171–215. [Google Scholar]
- Yildiz, Ç. New inequalities of the Hermite-Hadamard type for n-time differentiable functions which are quasiconvex. J. Math. Inequal. 2016, 10, 703–711. [Google Scholar] [CrossRef]
- Budak, H.; Ali, M.A.; Tarhanaci, M. Some new quantum Hermite–Hadamard-like inequalities for coordinated convex functions. J. Optim. Theory Appl. 2020, 186, 899–910. [Google Scholar] [CrossRef]
- Breaz, D.; Yildiz, Ç.; Cotîrlă, L.I.; Rahman, G.; Yergöz, B. New Hadamard type inequalities for modified h-convex functions. Fractal Fract. 2023, 7, 216. [Google Scholar] [CrossRef]
- Khan, M.A.; Chu, Y.; Khan, T.U.; Khan, J. Some new inequalities of Hermite-Hadamard type for s-convex functions with applications. Open Math. 2017, 15, 1414–1430. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite–Hadamard inequalities. Appl. Math. Comp. 2015, 251, 675–679. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Wien, Austria, 1997. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comp. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Chen, H.; Katugampola, U.N. Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yildirim, H. On Hermite-Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Yaldiz, H. On Hermite-Hadamard type inequalities for φ-convex functions via fractional integrals. Malays. J. Math. Sci. 2015, 9, 243–258. [Google Scholar]
- Yildiz, Ç.; Akgün, L.; Khan, M.A.; Rehman, N. Some Further Results Using Green’s Function for-Convexity. J. Math. 2023, 2023, 3848846. [Google Scholar] [CrossRef]
- Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications. A Contemporary Approach, 2nd ed.; CMS Books of Mathematics; Springer: Berlin, Germany, 2017. [Google Scholar]
- İşcan, İ. New refinements for integral and sum forms of Hölder inequality. J. Inequal. Appl. 2019, 2019, 304. [Google Scholar] [CrossRef]
- Özcan, S. Hermite–Hadamard type inequalities for m-convex and (α,m)-convex functions. J. Inequal. Appl. 2020, 2020, 175. [Google Scholar] [CrossRef]
- Chen, S.-B.; Rashid, S.; Noor, M.A.; Hammouch, Z.; Chu, Y.-M. New fractional approaches for n-polynomial p-convexity with applications in special function theory. Adv. Diff. Equ. 2020, 2020, 543. [Google Scholar] [CrossRef]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2005, 21, 191–203. [Google Scholar]
- Agarwal, R.P.; Luo, M.J.; Raina, R.K. On Ostrowski Type Inequalities. Fasc. Math. 2016, 56, 5–27. [Google Scholar] [CrossRef]
- Yaldiz, H.; Sarikaya, M.Z. On the Hermite-Hadamard Type Inequalities for Fractional Integral Operator. Kragujev. J. Math. 2020, 44, 369–378. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Kashuri, A.; Hernández, J.E.H. Trapezium-type inequalities for Raina’s fractional integrals operator using generalized convex functions. Symmetry 2020, 12, 1034. [Google Scholar] [CrossRef]
- Ahmad, H.; Tariq, M.; Sahoo, S.K.; Baili, J.; Cesarano, C. New Estimations of Hermite-Hadamard Type Integral Inequalities for Special Functions. Fractal Fract. 2021, 5, 144. [Google Scholar] [CrossRef]
- Set, E.; Dragomir, S.S.; Gözpinar, A. Some generalized Hermite-Hadamard type inequalities involving fractional integral operator for functions whose second derivatives in absolute value are s-convex. Acta Math. Univ. Comen. 2019, 88, 87–100. [Google Scholar]
- Set, E.; Noor, M.A.; Awan, M.U.; Gözpınar, A. Generalized Hermite-Hadamard type inequalities involving fractional integral operators. J. Inequal. Appl. 2017, 2017, 169. [Google Scholar] [CrossRef] [PubMed]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coşkun, M.; Yildiz, Ç.; Cotîrlă, L.-I. Novel Estimations of Hadamard-Type Integral Inequalities for Raina’s Fractional Operators. Fractal Fract. 2024, 8, 302. https://doi.org/10.3390/fractalfract8050302
Coşkun M, Yildiz Ç, Cotîrlă L-I. Novel Estimations of Hadamard-Type Integral Inequalities for Raina’s Fractional Operators. Fractal and Fractional. 2024; 8(5):302. https://doi.org/10.3390/fractalfract8050302
Chicago/Turabian StyleCoşkun, Merve, Çetin Yildiz, and Luminiţa-Ioana Cotîrlă. 2024. "Novel Estimations of Hadamard-Type Integral Inequalities for Raina’s Fractional Operators" Fractal and Fractional 8, no. 5: 302. https://doi.org/10.3390/fractalfract8050302
APA StyleCoşkun, M., Yildiz, Ç., & Cotîrlă, L. -I. (2024). Novel Estimations of Hadamard-Type Integral Inequalities for Raina’s Fractional Operators. Fractal and Fractional, 8(5), 302. https://doi.org/10.3390/fractalfract8050302