Darbo’s Fixed-Point Theorem: Establishing Existence and Uniqueness Results for Hybrid Caputo–Hadamard Fractional Sequential Differential Equations
Abstract
:1. Introduction
2. Preliminaries
- 1.
- , for any ;
- 2.
- for any .
3. Main Results
- and .
- There exists an upper semicontinuous function such that for any is non-decreasing, and
- There exists functions and continuous and non-decreasing such that
- There is such that and where
An Example
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meral, F.; Royston, T.; Magin, R. Fractional calculus in viscoelasticity: An experimental study. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 939–945. [Google Scholar] [CrossRef]
- Oldham, K. Fractional differential equations in electrochemistry. Adv. Eng. Softw. 2010, 41, 9–12. [Google Scholar] [CrossRef]
- Balachandran, K.; Matar, M.; Trujillo, J.J. Note on controllability of linear fractional dynamical systems. J. Control Decis. 2016, 3, 267–279. [Google Scholar] [CrossRef]
- Hadamard, J. Essai sur l’etude des fonctions donnees par leur developpment de Taylor. J. Math. Pures Appl. 1892, 8, 101–186. [Google Scholar]
- Ahmad, B.; Nieto, J.J. Sequential fractional diferential equations with three point boundary conditions. Comput. Math. Appl. 2012, 64, 3046–3052. [Google Scholar] [CrossRef]
- Ahmad, B.; Nieto, J.J. Boundary value problems for a class of sequential in tegro diferential equations of fractional order. J. Funct. Spaces Appl. 2013, 2013, 149659. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. A higher-order nonlocal three-point boundary value problem of sequential fractional diferential equations. Miskolc Math. Notes 2014, 15, 265–278. [Google Scholar] [CrossRef]
- Aqlan, M.H.; Alsaedi, A.; Ahmad, B.; Nieto, J.J. Existence theory for sequential fractional diferential equations with anti-periodic type boundary conditions. Open Math. 2016, 14, 723–735. [Google Scholar] [CrossRef]
- Klimek, M. Sequential fractional diferential equations with Hadamard derivative. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 4689–4697. [Google Scholar] [CrossRef]
- Mahmudov, N.I.; Awadalla, M.; Abuassba, K. Nonlinear sequential fractional dif ferential equations with nonlocal boundary conditions. Adv. Difer. Equ. 2017, 2017, 319. [Google Scholar] [CrossRef]
- Ye, H.; Huang, R. On the nonlinear fractional diferential equations with Caputo sequential fractional derivative. Adv. Math. Phys. 2015, 2015, 174156. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Diferential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Mohammadi, H.; Rezapour, S.; Etemad, S. On a hybrid fractional Caputo—Hadamard boundary value problem with hybrid Hadamard integral boundary value conditions. Adv. Differ. Equ. 2020, 2020, 455. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 2012, 142. [Google Scholar] [CrossRef]
- Baitiche, Z.; Guerbati, K.; Benchohra, M.; Henderson, J.; Avery, R. Boundary value problems for hybrid Caputo sequential fractional differential equations. Mathematics 2020, 7, 282. [Google Scholar] [CrossRef]
- Benchohra, M.; Henderson, J.; Seba, D. Measure of noncompactness and fractional differential equations in Banach Spaces. Commun. Appl. Anal. 2008, 12, 419. [Google Scholar]
- Darbo, G. Punti uniti in transformazioni a codominio noncompatto. Rend. Semin. Mat. Univ. Padova 1955, 24, 84–92. [Google Scholar]
- Banas, J.; Olszowy, L. On a class of measures of noncompactness in Banach algebras and their application to nonlinear integral equations. Z. Anal. Anwend. 2009, 28, 475–498. [Google Scholar] [CrossRef]
- Aghajani, A.; Banas, J.; Sebzali, N. Some generalizations of Darbo fixed point theorem and applications. Bull. Belg. Math. Soc.-Simon Stevin 2013, 20, 345–358. [Google Scholar] [CrossRef]
- Shunan, L.; Bingyang, C. Beyond phonon hydrodynamics: Nonlocal phonon heat transport from spatial fractional-order Boltzmann transport equation. AIP Adv. 2020, 10, 6. [Google Scholar]
- Marawan, A.-R. Applying fractional quantum mechanics to systems with electrical screening effects. Chaos Solitons Fractals 2021, 150, 111201. [Google Scholar]
- Dubey, S.; Chakraverty, S. Hybrid techniques for approximate analytical solution of space- and time-fractional telegraph equations. Pramana-J. Phys. 2023, 97, 13. [Google Scholar] [CrossRef]
- Aljoudi, S.; Ahmad, B.; Nieto, J.J.; Alsaedi, A. A coupled system of Hadamard type sequential fractional diferential equations with coupled strip conditions. Chaos Solitons Fractals 2016, 91, 39–46. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaseen, M.; Mumtaz, S.; George, R.; Hussain, A.; Nabwey, H.A. Darbo’s Fixed-Point Theorem: Establishing Existence and Uniqueness Results for Hybrid Caputo–Hadamard Fractional Sequential Differential Equations. Fractal Fract. 2024, 8, 326. https://doi.org/10.3390/fractalfract8060326
Yaseen M, Mumtaz S, George R, Hussain A, Nabwey HA. Darbo’s Fixed-Point Theorem: Establishing Existence and Uniqueness Results for Hybrid Caputo–Hadamard Fractional Sequential Differential Equations. Fractal and Fractional. 2024; 8(6):326. https://doi.org/10.3390/fractalfract8060326
Chicago/Turabian StyleYaseen, Muhammad, Sadia Mumtaz, Reny George, Azhar Hussain, and Hossam A. Nabwey. 2024. "Darbo’s Fixed-Point Theorem: Establishing Existence and Uniqueness Results for Hybrid Caputo–Hadamard Fractional Sequential Differential Equations" Fractal and Fractional 8, no. 6: 326. https://doi.org/10.3390/fractalfract8060326
APA StyleYaseen, M., Mumtaz, S., George, R., Hussain, A., & Nabwey, H. A. (2024). Darbo’s Fixed-Point Theorem: Establishing Existence and Uniqueness Results for Hybrid Caputo–Hadamard Fractional Sequential Differential Equations. Fractal and Fractional, 8(6), 326. https://doi.org/10.3390/fractalfract8060326