Nonlocal Changing-Sign Perturbation Tempered Fractional Sub-Diffusion Model with Weak Singularity
Abstract
:1. Introduction
2. Basic Definitions and Preliminaries
- (1)
- Let then
- (2)
- If then
- (3)
- If then
- There exist a constant and such that
3. Positive Case for
4. Negative Case for
5. Changing-Sign Case for
6. Example
- Conclusion The sub-diffusion model (28) has at least one positive solution.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Einstein, A. On the movement of small particles suspended in a stationary liquid demanded by the molecular kinetic theory of heat. Ann. Phys. 1905, 17, 549–560. [Google Scholar] [CrossRef]
- Sabzikar, F.; Meerschaert, M.; Chen, J. Tempered fractional calculus. J. Comput. Phys. 2015, 293, 14–28. [Google Scholar] [CrossRef]
- Koponen, I. Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Phys. Rev. E 1995, 52, 1197–1199. [Google Scholar] [CrossRef]
- Cartea, Á.; Negrete, D. Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Phys. Rev. E 2007, 76, 041105. [Google Scholar] [CrossRef]
- Meerschaert, M.; Zhang, Y.; Baeumer, B. Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 2008, 35, L17403. [Google Scholar] [CrossRef]
- Zhang, Y.; Meerschaert, M. Gaussian setting time for solute transport in fluvial systems. Water Resour. Res. 2011, 47, W08601. [Google Scholar] [CrossRef]
- Carr, P.; Geman, H.; Madan, D.; Yor, M. The fine structure of asset returns: An empirical investigation. J. Bus. 2002, 75, 305–333. [Google Scholar] [CrossRef]
- Chen, S.; Shen, J.; Wang, L. Laguerre functions and their applications to tempered fractional differential equations on infinite intervals. J. Sci. Comput. 2018, 74, 1286–1313. [Google Scholar] [CrossRef]
- Nielsen, O. Processes of normal inverse Gaussian type. Financ. Stoch. 1998, 2, 41–68. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, P.; Tian, H.; Wu, Y. Upper and lower solution method for a singular tempered fractional equation with a p-Laplacian operator. Fractal Fract. 2023, 7, 522. [Google Scholar] [CrossRef]
- Chen, W.; Fu, Z.; Grafakos, L.; Wu, Y. Fractional Fourier transforms on Lp and applications. Appl. Comput. Harmon. Anal. 2021, 55, 71–96. [Google Scholar] [CrossRef]
- Dong, B.; Fu, Z.; Xu, J. Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations. Sci. China Math. 2018, 61, 1807–1824. [Google Scholar] [CrossRef]
- Guo, X.; Fu, Z. An initial and boundary value problem of fractional Jeffreys’ fluid in a porous half spaces. Comput. Math. Appl. 2019, 78, 1801–1810. [Google Scholar] [CrossRef]
- Shi, S. Some notes on supersolutions of fractional p-Laplace equation. J. Math. Anal. Appl. 2018, 463, 10521074. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, L. Dual characterization of fractional capacity via solution of fractional p-Laplace equation. Math. Nachr. 2020, 293, 2233–2247. [Google Scholar] [CrossRef]
- Shi, S.; Zhai, Z.; Zhang, L. Characterizations of the viscosity solution of a nonlocal and nonlinear equation induced by the fractional p-Laplace and the fractional p-convexity. Adv. Calc. Var. 2024, 17, 195–207. [Google Scholar] [CrossRef]
- Tang, H.; Wang, G. Limiting weak type behavior for multilinear fractional integrals. Nonlinear Anal. 2020, 2020, 197. [Google Scholar] [CrossRef]
- Shi, S.; Xiao, J. Fractional capacities relative to bounded open Lipschitz sets complemented. Calc. Var. Partial. Differ. Eq. 2017, 56, 3. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Q.; Jhang, S.; Kang, Q. Approximation theorems associated with multidimensional fractional fouried reansform and applications in Laplace and heat equations. Fractal. Fract. 2022, 6, 625. [Google Scholar] [CrossRef]
- Shi, S.; Xiao, J. On Fractional Capacities Relative to Bounded Open Lipschitz Sets. Potential Anal. 2016, 45, 261–298. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, L.; Jiang, J.; Wu, Y.; Cui, Y. Solutions for a singular Hadamard-type fractional differential equation by the spectral construct analysis. J. Funct. Spaces 2020, 2020, 8392397. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, L.; Wang, G. Fractional Non-linear Regularity, Potential and Balayage. J. Geom. Anal. 2022, 32, 221. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, L.; Wang, G. Some new inequalities and extremal solutions of a Caputo-Fabrizio fractional Bagley-Torvik differential equation. Fractal Fract. 2022, 6, 488. [Google Scholar] [CrossRef]
- Shi, S.; Xiao, J. A tracing of the fractional temperature field. Sci. China Math. 2017, 60, 23032320. [Google Scholar] [CrossRef]
- Ledesma, C.; Cuti, H.; Rodríguez, J.; Bonilla, M. Boundary value problem with tempered fractional derivatives and oscillating term. J.-Pseudo-Differ. Oper. Appl. 2023, 14, 62. [Google Scholar] [CrossRef]
- Chang, D.; Duong, X.; Li, J.; Wang, W.; Wu, Q. An explicit formula of Cauchy-Szegö kernel for quaternionic Siegel upper half space and applications. Indiana Univ. Math. J. 2021, 70, 2451–2477. [Google Scholar] [CrossRef]
- Yang, M.; Fu, Z.; Liu, S. Analyticity and existence of the Keller-Segel-Navier-Stokes equations in critical Besov spaces. Adv. Nonlinear Stud. 2018, 18, 517–535. [Google Scholar] [CrossRef]
- Gong, R.; Vempati, M.; Wu, Q.; Xie, P. Boundedness and compactness of Cauchy-type integral commutator on weighted Morrey spaces. J. Aust. Math. Soc. 2022, 113, 3656. [Google Scholar] [CrossRef]
- Yang, M.; Fu, Z.; Sun, J. Existence and Gevrey regularity for a two-species chemotaxis system in homogeneous Besov spaces. Sci. China Math. 2017, 60, 1837–1856. [Google Scholar] [CrossRef]
- Cao, J.; Chang, D.; Fu, Z.; Yang, D. Real interpolation of weighted tent spaces. Appl. Anal. 2016, 59, 2415–2443. [Google Scholar] [CrossRef]
- Chang, D.; Fu, Z.; Yang, D.; Yang, S. Real-variable characterizations of Musielak-Orlicz-Hardy spaces associated with Schrödinger operators on domains. Math. Methods Appl. Sci. 2016, 39, 533–569. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. A sufficient and necessary condition of existence of blow-up radial solutions for a k-Hessian equation with a nonlinear operator. Nonlinear Anal. Model. Control. 2020, 25, 126–143. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, P.; Wu, Y.; Wiwatanapataphe, B. The uniqueness and iterative properties of solutions for a general Hadamard-type singular fractional turbulent flow model. Nonlinear Anal. Model. Control. 2022, 27, 428–444. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, J.; Wu, Y.; Wiwatanapataphee, B. Iterative properties of solution for a general singular n-Hessian equation with decreasing nonlinearity. Appl. Math. Lett. 2021, 112, 106826. [Google Scholar] [CrossRef]
- Chen, P.; Duong, X.; Li, J.; Wu, Q. Compactness of Riesz transform commutator on stratified Lie groups. J. Funct. Anal. 2019, 277, 1639–1676. [Google Scholar] [CrossRef]
- Shi, S.; Fu, Z.; Lu, S. On the compactness of commutators of Hardy operators. Pac. J. Math. 2020, 307, 239–256. [Google Scholar] [CrossRef]
- Duong, X.; Lacey, M.; Li, J.; Wick, B.; Wu, Q. Commutators of Cauchy-Szego type integrals for domains in Cn with minimal smoothness. Indiana Univ. Math. J. 2021, 70, 1505–1541. [Google Scholar] [CrossRef]
- Fu, Z.; Gong, S.; Lu, S.; Yuan, W. Weighted multilinear Hardy operators and commutators. Forum Math. 2015, 27, 2825–2852. [Google Scholar] [CrossRef]
- Shi, S.; Lu, S. Characterization of the central Campanato space via the commutator operator of Hardy type. J. Math. Anal. Appl. 2015, 429, 713732. [Google Scholar] [CrossRef]
- Wu, Q.; Fu, Z. Boundedness of Hausdorff operators on Hardy spaces in the Heisen-berg group. Banach J. Math. Anal. 2018, 12, 909–934. [Google Scholar] [CrossRef]
- Gu, L.; Ma, D. Dirac, Operators with gradient potentials and related monogenic functions. Complex Anal. Oper. Theory 2020, 14, 53. [Google Scholar] [CrossRef]
- Zhang, X.; Kong, D.; Tian, H.; Wu, Y.; Wiwatanapataphee, B. An upper-lower solution method for the eigenvalue problem of Hadamard-type singular fractional differential equation. Nonlinear Anal. Model. Control. 2022, 27, 789–802. [Google Scholar] [CrossRef]
- Zhang, X.; Tain, H.; Wu, Y.; Wiwatanapataphee, B. The radial solution for an eigenvalue problem of singular augmented Hessian equation. Appl. Math. Lett. 2022, 134, 108330. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, P.; Wu, Y. The eigenvalue problem of a singular k-Hessian equation. Appl. Math. Lett. 2022, 124, 107666. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Z.; Chen, L. Classification of solutions for an integral system with negative exponents. Complex Var. Elliptic Equ. 2019, 64, 204–222. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, W. On strong indefinite Schrödinger equations with non-periodic potential. J. Appl. Anal. Comput. 2023, 13, 1–10. [Google Scholar]
- Yang, M.; Fu, Z.; Sun, J. Existence and large time behavior to coupled chemotaxis-fluid equations in Besov-Morrey spaces. J. Differ. Equ. 2019, 266, 5867–5894. [Google Scholar] [CrossRef]
- Yang, S.; Chang, D.; Yang, D.; Fu, Z. Gradient estimates via rearrangements for solutions of some Schrödinger equations. Anal. Appl. 2018, 16, 339–361. [Google Scholar] [CrossRef]
- Chen, W.; Fu, Z.; Wu, Y. Positive solutions for nonlinear Schrodinger Kirchhoff equation in R3. Appl. Math. Lett. 2020, 104, 106274. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, L.; Jiang, J.; Wu, Y.; Cui, Y. Positive solutions for a weakly singular Hadamard-type fractional differential equation with changing-sign nonlinearity. J. Funct. Spaces 2020, 2020, 5623589. [Google Scholar] [CrossRef]
- Zhang, X.; Tain, H.; Wu, Y.; Wiwatanapataphee, B. Existence of positive solutions for third-order semipositone boundary value problems on time scales. Nonlinear Anal. Model. Control. 2023, 28, 133–151. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Chen, J.; Chen, P.; Li, L.; Wu, Y. Nonlocal Changing-Sign Perturbation Tempered Fractional Sub-Diffusion Model with Weak Singularity. Fractal Fract. 2024, 8, 337. https://doi.org/10.3390/fractalfract8060337
Zhang X, Chen J, Chen P, Li L, Wu Y. Nonlocal Changing-Sign Perturbation Tempered Fractional Sub-Diffusion Model with Weak Singularity. Fractal and Fractional. 2024; 8(6):337. https://doi.org/10.3390/fractalfract8060337
Chicago/Turabian StyleZhang, Xinguang, Jingsong Chen, Peng Chen, Lishuang Li, and Yonghong Wu. 2024. "Nonlocal Changing-Sign Perturbation Tempered Fractional Sub-Diffusion Model with Weak Singularity" Fractal and Fractional 8, no. 6: 337. https://doi.org/10.3390/fractalfract8060337
APA StyleZhang, X., Chen, J., Chen, P., Li, L., & Wu, Y. (2024). Nonlocal Changing-Sign Perturbation Tempered Fractional Sub-Diffusion Model with Weak Singularity. Fractal and Fractional, 8(6), 337. https://doi.org/10.3390/fractalfract8060337