A Fractional Magnetic System with Critical Nonlinearities
Abstract
:1. Introduction
2. Main Result
3. Preliminary Knowledge and Functional Setting
4. Proof of Main Result
- has a positive maximum;
- , where is given in Lemma 5, is given by Lemma 4 and is given by (25).
- ;
- If , then and for all is in a small neighborhood of .
- satisfies the (PS) condition on W.
- According to the definition of , we can see that for near ; hence, holds;
- Let be a (PS) sequence of . If , we can assume that , as . With the result of , that is and , we obtain and . Thus, by Lemma 5, we deduce that satisfies the (PS) condition for .
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fiscella, A.; Pinamonti, A.; Vecchi, E. Mulitiplicity results for magnetic fractional problems. J. Differ. Equ. 2017, 263, 4617–4633. [Google Scholar] [CrossRef]
- Wang, F.; Xiang, M. Multipulicity of solutions to a nonlocal Choquard equation involving fractional magnetic operators and critical exponent. SIAM Electron. J. Differ. Equ. 2016, 2016, 1–11. [Google Scholar]
- Xiang, M.; Pucci, P.; Squassina, M.; Zhang, B. Nonlocal Schrödinger-Kirchhoff equations with external magnetic field. Discret. Contin. Dyn. Syst. 2017, 37, 1631–1649. [Google Scholar] [CrossRef]
- Yang, L.; Zuo, J.; An, T. Existence of entire solutions for critical Sobolev—Hardy problems involving magnetic fractional operator. Complex Var. Elliptic Equ. 2021, 66, 1864–1880. [Google Scholar] [CrossRef]
- Jin, Z.; Sun, H.; Zhang, J. Existence of ground state solutions for critical fractional Choquard equations involving periodic magnetic field. Adv. Nonliner Stud. 2022, 22, 372–389. [Google Scholar] [CrossRef]
- Ambrosio, V. Existence and concentration results for some fractional Schrödinger equations in RN with magnetic fields. Commun. Partial Differ. Equ. 2019, 44, 637–680. [Google Scholar] [CrossRef]
- Di Cosmo, J.; Van Schaftingen, J. Semiclassical stationary states for nonlinear Schrödinger equations under a strong external magnetic field. J. Differ. Equ. 2015, 259, 596–627. [Google Scholar] [CrossRef]
- Pinamonti, A.; Squassina, M.; Vecchi, E. Magnetic BV-functions and the Bourgain-Brezis-Mironescu formula. Adv. Calc. Var. 2019, 12, 225–252. [Google Scholar] [CrossRef]
- Zhang, B.; Squassina, M.; Xia, Z. Fractional NLS equations with magnetic field, critical frequency and critical growth. Manuscripta Math. 2018, 155, 115–140. [Google Scholar]
- Yang, L.; An, T. Infinitley many solutions fo magnetic fractional problems with critical Sobolov-Hardy nonlinearities. Math. Methods Appl. Sci. 2018, 41, 9607–9617. [Google Scholar] [CrossRef]
- Sun, M.; Shi, S.; Repovš, D. Degenerate fractional Kirchhoff-type system with magnetic fields and upper critical growth. Mediterr. J. Math. 2022, 19, 170. [Google Scholar] [CrossRef]
- Liang, S.; Repovš, D.; Zhang, B. Fractional magnetic Schrödinger-Kirchhoff problems with convolution and critical nonlinearities. Math. Methods Appl. Sci. 2020, 43, 2473–2490. [Google Scholar] [CrossRef]
- Liang, S.; Repovš, D.; Zhang, B. On the fractional Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity. Comput. Math. Appl. 2018, 75, 1778–1794. [Google Scholar] [CrossRef]
- Ji, C.; Rădulescu, V. Multiplicity and concentration of solutions to the nonlinear magnetic Schrödinger system. Calc. Var. Partial Differ. Equ. 2020, 59, 115. [Google Scholar] [CrossRef]
- Ambrosio, V. On a fractional magnetic Schrödinger equation in R with exponential critical growth. Nonlinear Anal. 2019, 183, 117–148. [Google Scholar] [CrossRef]
- Ambrosio, V. Multiple concentrating solutions for a fractional Kirchhoff equation with magnetic fields. Discret. Contin. Dyn. Syst. 2006, 40, 781–815. [Google Scholar] [CrossRef]
- Squassina, M.; Volzone, B. Bourgain-Brézis-Mironescu formula for magnetic operators. C. R. Math. Acad. Sci. Paris 2016, 354, 825–831. [Google Scholar] [CrossRef]
- D’Avenia, P.; Squassina, M. Ground states for fractional magnetic operators. ESAIM Control Optim. Calc. Var. 2018, 24, 1–24. [Google Scholar] [CrossRef]
- Di Nezza, E.; Palatucci, G.; Valdinoci, E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573. [Google Scholar] [CrossRef]
- Chen, W.; Deng, S. The Nehari manifold for p-Laplacian system involving concave-convex nonlinearities. Nonlinear Anal. 2016, 27, 80–92. [Google Scholar] [CrossRef]
- Chen, W.; Deng, S. The Nehari manifold for non-local elliptic operators involving concave-convex nonlinearities. Z. Angew. Math. Phys. 2015, 66, 1387–1400. [Google Scholar] [CrossRef]
- Chen, W.; Squassina, M. Critical nonlcoal systems with concave-convex towers. Adv. Nonliner Stud. 2016, 16, 821–842. [Google Scholar] [CrossRef]
- Chang, X.; Wang, Z. Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity 2006, 26, 479–494. [Google Scholar] [CrossRef]
- Hou, G.; Ge, B.; Lu, J. Infinitely many solutions for sublinear fractional Schrödinger-type equations with general potentials. Electron. J. Diff. Equ. 2018, 97, 1–13. [Google Scholar]
- Molica Bisci, G.; Rădulescu, V. Ground state solutions of scalar field fractional Schrödinger equations. Calc. Var. Partial Diff. Equ. 2015, 54, 2985–3008. [Google Scholar] [CrossRef]
- Felmer, P.; Quaas, A.; Tan, J. Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 2012, 142, 1237–1262. [Google Scholar] [CrossRef]
- Pucci, P.; Xiang, M.; Zhang, B. Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations. Adv. Nonlinear Anal. 2016, 5, 27–55. [Google Scholar] [CrossRef]
- Chen, W.; Gui, Y. Multiplicity of solutions for fractional p&q-Laplacian system involving critical concave-convex nonlinearities. Appl. Math. Lett. 2018, 96, 81–88. [Google Scholar]
- Chu, C.; Sun, J.; Suo, H. Multiplicity of positive solutions for critical fractional equation involving concave-convex nonlinearities and sign-changing weight functions. Mediterr. J. Math. 2016, 13, 4437–4446. [Google Scholar] [CrossRef]
- Zhang, J.; Hsu, T. Multiplicity of positive solutions for a nonlocal elliptic problem involving critical Sobolev-Hardy exponents and concave-convex nonlinearities. Acta Math. Sci. 2020, 40, 679–699. [Google Scholar] [CrossRef]
- Liu, Z.; Ding, Y.; Liu, C.; Zhao, C. Existence and uniqueness of solutions for singular fractional differential equation boundary value problem with p-Laplacian. Adv. Differ. Equa. 2020, 2020, 83. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Y.; Liu, H.; Li, C.; Zhao, J.; Chu, H. On iterative positive solutions for a class of singular infinite-point p-Laplacian fractional differential equations with singular source terms. J. Appl. Anal. Comput. 2023, 13, 2827–2842. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z. Global boundedness of weak solutions for an attraction-repulsion chemotaxis system with p–Laplacian diffusion and nonlinear production. Discret. Comtin. Dyn. Syst. B 2023, 28, 4847–4863. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Jia, Z. Global weak solutions for an attraction-repulsion chemotaxis system with p–Laplacian diffusion and logistic source. Acta Math. Sci. 2024, 44, 909–924. [Google Scholar] [CrossRef]
- Shi, S.; Zhai, Z.; Zhang, L. Characterizations of the viscosity solution of a nonlocal and nonlinear equation induced by the fractional p–Laplace and the fractional p–convexity. Adv. Calc. Var. 2006, 17, 195–207. [Google Scholar] [CrossRef]
- Ambrosetti, A.; Brezis, H.; Cerami, G. Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 1994, 122, 519–543. [Google Scholar] [CrossRef]
- Brown, K.; Zhang, Y. The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function. J. Diff. Eqns. 1994, 122, 481–499. [Google Scholar] [CrossRef]
- Servadei, R.; Valdinoci, E. Mountain pass solutions for non-localelliptic operators. J. Math. Anal. Appl. 2012, 389, 887–898. [Google Scholar] [CrossRef]
- Garcia, A.; Peral, A. Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Am. Math. Soc. 1991, 323, 877–895. [Google Scholar] [CrossRef]
- Fiscella, A.; Valdinoci, E. A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 2014, 94, 156–170. [Google Scholar] [CrossRef]
- Rabinowitz, P.H. Minmax methods in critical points theory with application to differential equations. In CBMS Regional Conference Series in Mathemathics; American Mathematical Society: Providence, RI, USA, 1986; Volume 65. [Google Scholar]
- Ambrosetti, A.; Rabinowitz, P.H. Dual variational methods in critical point theory and application. J. Funct. Anal. 1973, 14, 349–381. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Heidarkhani, S.; Zuo, J. A Fractional Magnetic System with Critical Nonlinearities. Fractal Fract. 2024, 8, 380. https://doi.org/10.3390/fractalfract8070380
Yang L, Heidarkhani S, Zuo J. A Fractional Magnetic System with Critical Nonlinearities. Fractal and Fractional. 2024; 8(7):380. https://doi.org/10.3390/fractalfract8070380
Chicago/Turabian StyleYang, Libo, Shapour Heidarkhani, and Jiabin Zuo. 2024. "A Fractional Magnetic System with Critical Nonlinearities" Fractal and Fractional 8, no. 7: 380. https://doi.org/10.3390/fractalfract8070380
APA StyleYang, L., Heidarkhani, S., & Zuo, J. (2024). A Fractional Magnetic System with Critical Nonlinearities. Fractal and Fractional, 8(7), 380. https://doi.org/10.3390/fractalfract8070380