Existence of Positive Solutions for Non-Local Magnetic Fractional Systems
Abstract
:1. Introduction and Motivation
2. Preliminaries
- , and are, respectively, the real part, the complex conjugate, and the modulus of a given
- denotes the Lebesgue space of measurable functions such that
3. Main Results
4. Practical Examples and Applications
- Electromagnetic Fields:The magnetic fractional Laplacian can model electromagnetic fields in materials with complex conductivity properties. For instance, in plasmas or certain metamaterials, the fractional order of the Laplacian accounts for anomalous diffusion and non-local interactions, providing more accurate descriptions than classical models.
- Quantum Mechanics:In quantum mechanics, fractional Schrödinger equations with magnetic fields describe particles in potential fields with fractal-like properties. These models capture the effects of magnetic fields on the quantum states of particles, particularly in low-temperature physics and condensed matter systems.
- Biological Systems:Fractional differential equations, including magnetic fractional Laplacians, are used to model various biological processes, such as diffusion in heterogeneous media, population dynamics, and the spread of diseases. The fractional aspect helps account for memory effects and spatial heterogeneity.
- Engineering Applications:In engineering, fractional magnetic operators are applied to control systems and signal processing. They are used to design controllers and filters that can handle complex dynamical behaviors, such as those found in robotic systems and communications networks.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shah, Z.; Bonyah, E.; Alzahrani, E.; Jan, R.; Aedh Alreshidi, N. Chaotic phenomena and oscillations in dynamical behaviour of financial system via fractional calculus. Complexity 2022, 2022, 8113760. [Google Scholar] [CrossRef]
- Ahmad, I.; Ali, I.; Jan, R.; Idris, S.A.; Mousa, M. Solutions of a three-dimensional multi-term fractional anomalous solute transport model for contamination in groundwater. PLoS ONE 2023, 18, e0294348. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.Q.; Jan, R.; Bonyah, E.; Shah, Z.; Alzahrani, E. Qualitative analysis of the transmission dynamics of dengue with the effect of memory, reinfection, and vaccination. Comput. Math. Methods Med. 2022, 2022, 7893570. [Google Scholar] [CrossRef] [PubMed]
- Jan, R.; Khan, H.; Kumam, P.; Tchier, F.; Shah, R.; Jebreen, H.B. The Investigation of the Fractional-View Dynamics of Helmholtz Equations within Caputo Operator. Comput. Mater. Contin. 2021, 68, 3185–3201. [Google Scholar] [CrossRef]
- Latreche, S.; Guerbati, K.; Guefaifia, R.; Mekawy, I.; Alharbi, A.; Jan, R. Existence and uniqueness of nonlinear Goursat problem in the class of Denjoy–Carleman. Partial Differ. Equ. Appl. Math. 2024, 10, 100671. [Google Scholar] [CrossRef]
- Choucha, A.; Jan, R.; Mekawy, I.; Alharbi, A.; Alnegga, M. Growth and blow-up of solutions with positive initial energy for a viscoelastic Kirchhoff equation with a logarithmic nonlinearity, delay and Balakrishnan-Taylor damping terms. Discret. Contin. Dyn. Syst.-S 2024. [Google Scholar] [CrossRef]
- Nageswara Rao, S.; Zico Meetei, M. Positive solutions for a coupled system of nonlinear semipositone fractional boundary value problems. Int. J. Differ. Equ. 2019, 2019, 2893857. [Google Scholar] [CrossRef]
- d’Avenia, P.; Squassina, M. Ground states for fractional magnetic operators. ESAIM Control. Optim. Calc. Var. 2018, 24, 1–24. [Google Scholar] [CrossRef]
- Chhetri, M.; Girg, P.; Hollifield, E. Existence of positive solutions for fractional Laplacian equations: Theory and numerical experiments. Electron. J. Differ. Equ. 2020, 2020, 1–31. [Google Scholar] [CrossRef]
- Alves, C.O.; Correa, F.J.S.A. On existence of solutions for a class of problem involving a nonlinear operator. Commun. Appl. Nonlinear Anal. 2001, 8, 43–56. [Google Scholar]
- Guefaifia, R.; Allahem, A.; Jan, R.; Boulaaras, S.; Biomy, M. Analysis of Positive Weak Solutions for a Class of Fractional Laplacian Elliptic Systems of Type Kirchhoff. J. Nonlinear Math. Phys. 2024, 31, 1. [Google Scholar] [CrossRef]
- Pozrikidis, C. The Fractional Laplacian; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Lieb, E.H.; Loss, M. Analysis, 2nd ed.; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 2001. [Google Scholar]
- Di Nezza, E.; Palatucci, G.; Valdinoci, E. Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 2012, 136, 521–573. [Google Scholar] [CrossRef]
- Bisci, G.M.; Radulescu, V.D.; Servadei, R. Variational Methods for Nonlocal Fractional Problems; Encyclopedia of Mathematics and Its Applications; With a Foreword by Jean Mawhin; Cambridge University Press: Cambridge, MA, USA, 2016; Volume 162. [Google Scholar]
- Kirchhoff, G. Mechanik; Teubner: Leipzig, Germany, 1883. [Google Scholar]
- Alessio, F.; Eugenio, V. Bifurcation and multiplicity results for critical magnetic fractional problems. Electron. J. Differ. Equ. 2018, 2018, 1–18. [Google Scholar]
- Zuo, J.; An, T.; Ye, G. A Class of Critical Magnetic Fractional Kirchhoff Problems. Symmetry 2020, 12, 76. [Google Scholar] [CrossRef]
- Rossella, B.; Pietro, D.; Giovanni, M.B. Asymptotically Linear Magnetic Fracional Problems. arXiv 2023, arXiv:2312.04473v1. [Google Scholar]
- Rasouli, S.H. On a fractional reaction-diffusion models arising in population dynamics. arXiv 2021, arXiv:2101.03496v1. [Google Scholar]
- Silvia, F.; Iannizzotto, A. Existence and multiplicity of positive solutions for the fractional Laplacian under subcritical or critical growth. Complex Var. Elliptic Equ. 2021, 66, 1642–1663. [Google Scholar] [CrossRef]
- Rajendran, D.; Sweta, T. A multiparameter semipositone fractional Laplacian problem involving critical exponent. arXiv 2019, arXiv:1905.10062. [Google Scholar]
- Fiscella, A.; Pinamonti, A.; Vecchi, E. Multiplicity results for magnetic fractional problems. J. Differ. Equ. 2017, 263, 4617–4633. [Google Scholar] [CrossRef]
- Reed, M.; Simon, B. Methods of Modern Mathematical Physics, I, Functional Analysis; Academic Press, Inc.: New York, NY, USA, 1980. [Google Scholar]
- Ros-Oton, X. Nonlocal elliptic equations in bounded domains: A survey. Publ. Mat. 2016, 60, 3–26. [Google Scholar] [CrossRef]
- Zhang, B.; Marco, S.; Zhang, X. Fractional NLS equations with magnetic field, critical frequency and critical growth. Manuscripta Math. 2018, 155, 115–140. [Google Scholar]
- Azouz, N.; Bensedik, A. Existence result for an elliptic equation of Kirchhoff-type with changing sign data. Funkc. Ekvacioj 2012, 55, 55–66. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouali, T.; Guefaifia, R.; Boulaaras, S.; Radwan, T. Existence of Positive Solutions for Non-Local Magnetic Fractional Systems. Fractal Fract. 2024, 8, 381. https://doi.org/10.3390/fractalfract8070381
Bouali T, Guefaifia R, Boulaaras S, Radwan T. Existence of Positive Solutions for Non-Local Magnetic Fractional Systems. Fractal and Fractional. 2024; 8(7):381. https://doi.org/10.3390/fractalfract8070381
Chicago/Turabian StyleBouali, Tahar, Rafik Guefaifia, Salah Boulaaras, and Taha Radwan. 2024. "Existence of Positive Solutions for Non-Local Magnetic Fractional Systems" Fractal and Fractional 8, no. 7: 381. https://doi.org/10.3390/fractalfract8070381
APA StyleBouali, T., Guefaifia, R., Boulaaras, S., & Radwan, T. (2024). Existence of Positive Solutions for Non-Local Magnetic Fractional Systems. Fractal and Fractional, 8(7), 381. https://doi.org/10.3390/fractalfract8070381