Time-Stepping Error Estimates of Linearized Grünwald–Letnikov Difference Schemes for Strongly Nonlinear Time-Fractional Parabolic Problems
Abstract
:1. Introduction
2. Numerical Scheme
3. Numerical Analysis
4. Numerical Experiments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Cen, D.; Wang, Z.; Mo, Y. Second order difference schemes for time-fractional KdV-Burgers’ equation with initial singularity. Appl. Math. Lett. 2021, 112, 106829. [Google Scholar] [CrossRef]
- Yuan, W.; Zhang, C.; Li, D. Linearized fast time–stepping schemes for time–space fractional Schrödinger Equations. Phys. D 2023, 454, 133865. [Google Scholar] [CrossRef]
- Fallahgoul, H.; Focardi, S.; Fabozzi, F.J. Fractional Calculus and Fractional Processes with Applications to Financial Economics, Theory and Application; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Koeller, R.C. Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 1984, 51, 299–307. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Application of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Danbury, CT, USA, 2006. [Google Scholar]
- Yuan, W.; Li, D.; Zhang, C. Linearized Transformed L1 Galerkin FEMs with Unconditional Convergence for Nonlinear Time Fractional Schrödinger Equations. Theor. Meth. Appl. 2023, 16, 348–369. [Google Scholar] [CrossRef]
- Gao, R.; Li, D.; Li, X.; Yin, Y. An energy–stable variable–step L1 scheme for time–fractional Navier–Stokes equations. Phys. D 2024, 467, 134264. [Google Scholar] [CrossRef]
- Zhou, B.; Chen, X.; Li, D. Nonuniform Alikhanov linearized Galerkin finite element methods for nonlinear time fractional parabolic equations. J. Sci. Comput. 2020, 85, 39. [Google Scholar] [CrossRef]
- Liao, H.; McLean, W.; Zhang, J. A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 2019, 57, 218–237. [Google Scholar] [CrossRef]
- Liu, N.; Qin, H.; Yang, Y. Unconditionally optimal H1–norm error estimates of a fast and linearized Galerkin method for nonlinear sub–diffusion equations. Comput. Math. Appl. 2022, 107, 70–81. [Google Scholar] [CrossRef]
- Liu, N.; Chen, Y.; Zhang, J.; Zhao, Y. Unconditionally optimal H1–error estimate of a fast nonuniform L2–1σ scheme for nonlinear subdiffusion equations. Numer. Algorithms 2023, 92, 1655–1677. [Google Scholar] [CrossRef]
- Gracia, J.L.; Riordan, E.O.; Stynes, M. Convergence in positive time for a finite difference method applied to a fractional convection-diffusion problem. Comput. J. Comput. Methods Appl. Math. 2018, 18, 33–42. [Google Scholar] [CrossRef]
- Kopteva, N. Error analysis for time fractional semilinear parabolic equations using upper and lower solutions. SIAM J. Numer. Anal. 2020, 58, 2212–2234. [Google Scholar] [CrossRef]
- Li, D.; Qin, H.; Zhang, J. Sharp poinwise in time error estimate of L1 scheme for nonlinear subdiffusion equation. J. Comput. Math. 2024, 42, 662–678. [Google Scholar] [CrossRef]
- Yan, Y.; Khan, M.; Ford, N.J. An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 2018, 56, 210–227. [Google Scholar] [CrossRef]
- Jin, B.; Li, B.; Zhou, Z. Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 2017, 39, A3129–A3152. [Google Scholar] [CrossRef]
- Zhang, H.; Zeng, F.; Jiang, X.; Karniadakis, G.E. Convergence analysis of the time-stepping numerical methods for time-fractional nonlinear subdiffusion equations. Fract. Calc. Appl. Anal. 2022, 25, 453–487. [Google Scholar] [CrossRef]
- Li, D.; She, M.; Sun, H.; Yan, X. A novel discrete fractional Grönwall-type inequality and its application in pointwise-in-time error estimates. J. Sci. Comput. 2022, 91, 27. [Google Scholar] [CrossRef]
- Santra, S.; Mohapatra, J. Analysis of a finite difference method based on L1 discretization for solving multi-term fractional differential equation involving weak singularity. Math. Methods Appl. Sci. 2022, 45, 6677–6690. [Google Scholar] [CrossRef]
- Chen, H.; Holland, F.; Stynes, M. An analysis of the Grünwald-Letnikov scheme for initial-value problems with weakly singular solutions. Appl. Numer. Math. 2019, 139, 52–61. [Google Scholar] [CrossRef]
- Li, D.; Liao, H.; Sun, W.; Wang, J.; Zhang, J. Analysis of L1-Galerkin FEMs for time–fractional nonlinear parabolic problems. Commun. Comput. Phys. 2018, 24, 86–103. [Google Scholar] [CrossRef]
- Chen, H.; Shi, Y.; Zhang, J.; Zhao, Y. Sharp error estimate of a Grünwald-Letnikov scheme for reaction-subdiffusion equations. Numer. Algorithms 2022, 89, 1465–1477. [Google Scholar] [CrossRef]
- Dixon, J. On the order of the error in discretization methods for weakly singular second kind Volterra integral equations with non-smooth solutions. BIT Numer. Math. 1985, 25, 624–634. [Google Scholar] [CrossRef]
N | = 0.4 | = 0.6 | = 0.8 | |||||
---|---|---|---|---|---|---|---|---|
Orders | Orders | Orders | ||||||
20 | 1.9119E-02 | – | 2.8577E-02 | – | 3.8115E-02 | – | ||
40 | 9.4595E-03 | 1.0152 | 1.4165E-02 | 1.0152 | 1.8921E-02 | 1.0104 | ||
80 | 4.7039E-03 | 1.0079 | 7.0520E-03 | 1.0063 | 9.4227E-03 | 1.0051 | ||
160 | 2.3448E-03 | 1.0044 | 3.5180E-03 | 1.0044 | 4.7049E-03 | 1.0026 | ||
320 | 1.1702E-03 | 1.0027 | 1.7567E-03 | 1.0019 | 2.3500E-03 | 1.0015 |
T | = 0.4 | = 0.6 | = 0.8 | |||||
---|---|---|---|---|---|---|---|---|
Orders | Orders | Orders | ||||||
6.2044E-04 | – | 1.1365E-05 | – | 1.4471E-06 | – | |||
1.7885E-05 | 0.5402 | 1.8707E-06 | 0.7836 | 1.6928E-07 | 0.9319 | |||
5.3146E-06 | 0.5270 | 3.9938E-07 | 0.6706 | 2.5282E-08 | 0.8258 | |||
1.7576E-06 | 0.4806 | 9.5724E-08 | 0.6204 | 3.9679E-09 | 0.8042 | |||
6.3740E-07 | 0.4405 | 2.3752E-08 | 0.6053 | 6.2788E-10 | 0.8007 | |||
2.4350E-07 | 0.4179 | 5.9478E-09 | 0.6013 | 9.9488E-11 | 0.8001 | |||
9.5287E-08 | 0.4075 | 1.4929E-09 | 0.6003 | 1.5767E-11 | 0.8000 |
N | = 0.4 | = 0.6 | = 0.8 | |||||
---|---|---|---|---|---|---|---|---|
Orders | Orders | Orders | ||||||
4 | 4.4921E-02 | – | 4.4905E-02 | – | 4.4776E-02 | – | ||
8 | 1.1055E-02 | 2.0227 | 1.1036E-02 | 2.0246 | 1.0990E-02 | 2.0266 | ||
16 | 2.7260E-03 | 2.0198 | 2.7072E-03 | 2.0274 | 2.6813E-03 | 2.0351 | ||
32 | 6.5285E-04 | 2.0620 | 6.3405E-04 | 2.0941 | 6.1335E-04 | 2.1282 | ||
64 | 1.3513E-04 | 2.2724 | 1.1635E-04 | 2.4462 | 9.6931E-05 | 2.6617 |
N | = 0.4 | = 0.6 | = 0.8 | |||||
---|---|---|---|---|---|---|---|---|
Orders | Orders | Orders | ||||||
20 | 7.5426E-03 | – | 8.1545E-03 | – | 8.7658E-03 | – | ||
40 | 3.8026E-03 | 0.9881 | 4.1081E-03 | 0.9891 | 4.4155E-03 | 0.9893 | ||
80 | 1.9090E-03 | 0.9942 | 2.0617E-03 | 0.9947 | 2.2158E-03 | 0.9948 | ||
160 | 9.5638E-04 | 0.9971 | 1.0327E-03 | 0.9974 | 1.1099E-03 | 0.9974 | ||
320 | 4.7865E-04 | 0.9986 | 5.1682E-04 | 0.9987 | 5.5543E-04 | 0.9987 |
T | = 0.4 | = 0.6 | = 0.8 | |||||
---|---|---|---|---|---|---|---|---|
Orders | Orders | Orders | ||||||
4.5550E-05 | – | 4.2083E-06 | – | 3.4867E-07 | – | |||
1.2815E-05 | 0.5508 | 8.2348E-07 | 0.7085 | 5.0240E-08 | 0.8414 | |||
3.8886E-06 | 0.5179 | 1.9169E-07 | 0.6330 | 7.8361E-09 | 0.8069 | |||
1.3330E-06 | 0.4650 | 4.7188E-08 | 0.6088 | 1.2388E-09 | 0.8011 | |||
4.9542E-07 | 0.4299 | 1.1792E-08 | 0.6022 | 1.9625E-10 | 0.8002 | |||
1.9157E-07 | 0.4126 | 2.9583E-09 | 0.6006 | 3.1102E-11 | 0.8000 |
N | = 0.4 | = 0.6 | = 0.8 | |||||
---|---|---|---|---|---|---|---|---|
Orders | Orders | Orders | ||||||
8 | 3.8667E-05 | – | 5.2839E-05 | – | 5.2703E-05 | – | ||
16 | 1.8713E-05 | 1.0471 | 2.5169E-05 | 1.0699 | 5.4107E-05 | 1.1284 | ||
32 | 9.1542E-06 | 1.0315 | 1.2221E-05 | 1.0423 | 1.1499E-05 | 1.0679 | ||
64 | 4.4738E-06 | 1.0329 | 5.9512E-06 | 1.0381 | 5.5528E-06 | 1.0502 | ||
128 | 2.1575E-06 | 1.0521 | 2.8649E-06 | 1.0547 | 2.6622E-06 | 1.0606 |
T | = 0.4 | = 0.6 | = 0.8 | |||||
---|---|---|---|---|---|---|---|---|
Orders | Orders | Orders | ||||||
6.9689E-05 | – | 3.3337E-05 | – | 1.6673E-05 | – | |||
3.8249E-05 | 0.2605 | 1.9890E-05 | 0.2243 | 2.1532E-06 | 0.8889 | |||
2.1335E-05 | 0.2535 | 6.7966E-06 | 0.4663 | 2.8157E-07 | 0.8835 | |||
1.7114E-05 | 0.0958 | 1.7214E-06 | 0.5964 | 4.2738E-08 | 0.8188 | |||
1.0875E-05 | 0.1969 | 4.2407E-07 | 0.6085 | 6.7243E-09 | 0.8032 | |||
5.6239E-06 | 0.2864 | 1.0576E-07 | 0.6031 | 1.0645E-09 | 0.8005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, H.; Li, L.; Li, Y.; Chen, X. Time-Stepping Error Estimates of Linearized Grünwald–Letnikov Difference Schemes for Strongly Nonlinear Time-Fractional Parabolic Problems. Fractal Fract. 2024, 8, 390. https://doi.org/10.3390/fractalfract8070390
Qin H, Li L, Li Y, Chen X. Time-Stepping Error Estimates of Linearized Grünwald–Letnikov Difference Schemes for Strongly Nonlinear Time-Fractional Parabolic Problems. Fractal and Fractional. 2024; 8(7):390. https://doi.org/10.3390/fractalfract8070390
Chicago/Turabian StyleQin, Hongyu, Lili Li, Yuanyuan Li, and Xiaoli Chen. 2024. "Time-Stepping Error Estimates of Linearized Grünwald–Letnikov Difference Schemes for Strongly Nonlinear Time-Fractional Parabolic Problems" Fractal and Fractional 8, no. 7: 390. https://doi.org/10.3390/fractalfract8070390
APA StyleQin, H., Li, L., Li, Y., & Chen, X. (2024). Time-Stepping Error Estimates of Linearized Grünwald–Letnikov Difference Schemes for Strongly Nonlinear Time-Fractional Parabolic Problems. Fractal and Fractional, 8(7), 390. https://doi.org/10.3390/fractalfract8070390