Application of Fractional-Order Multi-Wing Chaotic System to Weak Signal Detection
Abstract
:1. Introduction
2. Fractional-Order Multi-Wing Chaotic System Model and Dynamic Characteristics Analysis
2.1. Fractional-Order Multi-Wing Chaotic System Model
2.2. Dissipativity and the Existence of an Attractor
2.3. Equilibrium Analysis
2.4. Dynamic Characteristics under the Influence of Order
3. Weak Signal Detection
3.1. Amplitudes Detection of Weak Signals
3.2. Frequencies Detection of Weak Signals
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MUSIC | Multi-signal classification |
References
- Birx, D.L.; Pipenberg, S.J. Chaotic oscillators and complex mapping feed forward networks(CMFFNs) for signal detection in noisy environments. In Proceedings of the [Proceedings 1992] IJCNN International Joint Conference on Neural Networks, Baltimore, MD, USA, 7–11 June 1992. [Google Scholar]
- Wang, G.Y.; He, S. Quantitative study on detection and estimation of weak signals by using chaotic duffifing oscillators. IEEE Trans. Circuits Syst. I 2003, 50, 945–953. [Google Scholar] [CrossRef]
- Wang, Q.B.; Yang, Y.J.; Zhang, X. Weak signal detection based on Mathieu-Duffing oscillator with time-delay feedback and multiplicative noise. Chaos Solitons Fractals 2020, 137, 109832. [Google Scholar] [CrossRef]
- Jiao, S.B.; Jiang, W.; Lei, S.; Huang, W.C.; Zhang, Q. Research on detection method of multi-frequency weak signal based on stochastic resonance and chaos characteristics of Duffing system. Chin. J. Phys. 2020, 64, 333–347. [Google Scholar]
- Zhao, Z.H.; Yang, S. Application of van der Pol-Duffing oscillator in weak signal detection. Comput. Electr. Eng. 2015, 41, 1–8. [Google Scholar]
- Li, Q.Y.; Shi, S. Research on weak signal detection method based on duffing oscillator in narrowband noise. In Proceedings of the Artificial Intelligence for Communications and Networks: Second EAI International Conference, Virtual Event, 19–20 December 2020. [Google Scholar]
- Akilli, M.; Yilmaz, N.; Gediz Akdeniz, K. Automated system for weak periodic signal detection based on Duffing oscillator. IET Signal Process. 2020, 14, 710–716. [Google Scholar] [CrossRef]
- Li, C.S.; Qu, L.S. Applications of chaotic oscillator in machinery fault diagnosis. Mech. Syst. Signal Process. 2007, 21, 257–269. [Google Scholar] [CrossRef]
- Chen, H.Y.; Lv, J.T.; Zhang, S.Q.; Zhang, L.G.; Li, J. Chaos weak signal detecting algorithm and its application in the ultrasonic Doppler bloodstream speed measuring. J. Phys. Conf. Ser. 2005, 13, 320. [Google Scholar] [CrossRef]
- Hu, G.; Wang, K.J.; Liu, L.L. Detection Line Spectrum of Ship Radiated Noise Based on a New 3D Chaotic System. Sensors 2021, 21, 1610. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Qi, L.W.; Teng, S.F.; Wang, Q.S.; Wang, L.; Zhang, X.G. A simplest Lorenz-like chaotic circuit and its applications in secure communication and weak signal detection. EPJ-Spec. Top. 2021, 230, 1933–1944. [Google Scholar] [CrossRef]
- Shi, M.; Jin, C.L. Applying Improved Chaos System to Weak Signal Detection. In Proceedings of the 2015 International Industrial Informatics and Computer Engineering Conference, Xi’an, China, 10–11 January 2015. [Google Scholar]
- Li, G.Z.; Tan, N.L.; Su, S.Q.; Zhang, C. Unknown frequency weak signal detection based on Lorenz chaotic synchronization system. J. Vib. Shock 2019, 38, 155–161. [Google Scholar]
- Li, G.Z.; Zhang, B. A Novel Weak Signal Detection Method via Chaotic Synchronization Using Chua’s Circuit. IEEE Trans. Ind. Electron. 2017, 64, 2255–2265. [Google Scholar] [CrossRef]
- Li, Y.; Li, F.G.; Lyu, S.X.; Xu, M.; Wang, S.Y. Blind extraction of ECG signals based on similarity in the phase space. Chaos Solitons Fractals 2021, 147, 110950. [Google Scholar] [CrossRef]
- Li, S.Y.; Lin, Y.C.; Tam, L.M. A smart detection technology for personal ECG monitoring via chaos-based data mapping strategy. Multimed. Tools Appl. 2021, 80, 6397–6412. [Google Scholar] [CrossRef]
- Yin, C.; Jiang, S.B.; Zhang, Y.N. A Photoacoustic Spectrum Detection System Based on Chaos Detection of Weak Signal. In Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference, Chongqing, China, 12–14 March 2021. [Google Scholar]
- Soong, C.Y.; Huang, W.T.; Lin, F.P.; Tzeng, P.Y. Controlling chaos with weak periodic signals optimized by a genetic algorithm. Phys. Rev. E 2004, 70, 016211. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Huang, L.L.; Xiang, J.H.; Bao, H.; Li, H.Z. Generating multi-wing hidden attractors with only stable node-foci via non-autonomous approach. Phys. Scr. 2021, 96, 125220. [Google Scholar] [CrossRef]
- Wu, Q.J.; Hong, Q.H.; Liu, X.Y.; Wang, X.P.; Zeng, Z.G. A novel amplitude control method for constructing nested hidden multi-butterfly and multiscroll chaotic attractors. Chaos Solitons Fractals 2020, 134, 109727. [Google Scholar] [CrossRef]
- Sahoo, S.; Roy, B.K. Design of multi-wing chaotic systems with higher largest Lyapunov exponent. Chaos Solitons Fractals 2022, 157, 111926. [Google Scholar] [CrossRef]
- Peng, X.N.; Zeng, Y.C. A simple method for generating mirror symmetry composite multiscroll chaotic attractors. Int. J. Bifurc. Chaos 2020, 30, 2050220. [Google Scholar] [CrossRef]
- Yan, D.W.; Ji’e, M.; Wang, L.D.; Duan, S.K.; Du, X.Y. Generating novel multi-scroll chaotic attractors via fractal transformation. Nonlinear Dyn. 2022, 107, 3919–3944. [Google Scholar] [CrossRef]
- Hong, Q.H.; Wu, Q.J.; Wang, X.P.; Zeng, Z.G. Novel Nonlinear Function Shift Method for Generating Multiscroll Attractors Using Memristor-Based Control Circuit. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 1174–1185. [Google Scholar] [CrossRef]
- Li, W.J.; Li, P.; Jia, M.M. Chaos control and chaos synchronization of a multi-wing chaotic system and its application in multi-frequency weak signal detection. AIP Adv. 2021, 11, 095003. [Google Scholar] [CrossRef]
- Yan, S.H.; Sun, X.; Wang, Q.Y.; Ren, Y.; Shi, W.L.; Wang, E. A novel double-wing chaotic system with infinite equilibria and coexisting rotating attractors: Application to weak signal detection. Phys. Scr. 2021, 96, 125216. [Google Scholar] [CrossRef]
- Hammouch, Z.; Yavuz, M.; Ozdemir, N. Numerical Solutions and Synchronization of a Variable-Order Fractional Chaotic System. Math. Model. Numer. Simul. Appl. 2021, 1, 11–23. [Google Scholar] [CrossRef]
- Chen, L.P.; Yin, H.; Huang, T.W.; Yuan, L.G.; Zheng, S.; Yin, L.S. Chaos in fractional-order discrete neural networks with application to image encryption. Neural Netw. 2020, 125, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Baleanu, D.; Zibaei, S.; Namjoo, M.; Jajarmi, A. A nonstandard finite difference scheme for the modeling and nonidentical synchronization of a novel fractional chaotic system. Adv. Differ. Equ. 2021, 2021, 308. [Google Scholar] [CrossRef]
- Wang, S.J.; He, S.B.; Yousefpour, A.; Jahanshahi, H.; Repnik, R.; Perc, M. Chaos and complexity in a fractional-order financial system with time delays. Chaos Solitons Fractals 2020, 131, 109521. [Google Scholar] [CrossRef]
- Sayed, S.; Amir, A.; Emile Franc Doungmo Goufo. Investigation of complex behaviour of fractal fractional chaotic attractor with mittag-leffler Kernel. Chaos Solitons Fractals 2021, 152, 111332. [Google Scholar]
- He, Y.Z.; Fu, Y.X.; Qiao, Z.J.; Kang, Y.M. Chaotic resonance in a fractional-order oscillator system with application to mechanical fault diagnosis. Chaos Solitons Fractals 2021, 142, 110536. [Google Scholar] [CrossRef]
- Huang, P.F.; Chai, Y.; Chen, X.L. Multiple dynamics analysis of Lorenz-family systems and the application in signal detection. Chaos Solitons Fractals 2022, 156, 111797. [Google Scholar] [CrossRef]
- Li, G.H.; Xie, R.T.; Yang, H. Detection method of ship-radiated noise based on fractional-order dual coupling oscillator. Nonlinear Dyn. 2024, 112, 2091–2118. [Google Scholar] [CrossRef]
- Qiao, Z.J.; He, Y.B.; Liao, C.R.; Zhu, R.H. Noise-boosted weak signal detection in fractional nonlinear systems enhanced by increasing potential-well width and its application to mechanical fault diagnosis. Chaos Solitons Fractals 2023, 175, 113960. [Google Scholar] [CrossRef]
- Dong, K.F.; Xu, K.; Zhou, Y.Y.; Zuo, C.; Wang, L.M.; Zhang, C.; Jin, F.; Song, J.; Mo, W.; Hui, Y. A memristor-based chaotic oscillator for weak signal detection and its circuitry realization. Nonlinear Dyn. 2022, 109, 2129–2141. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, Y.C.; Li, Z.J. One to four-wing chaotic attractors coined from a novel 3D fractional-order chaotic system with complex dynamics. Chin. J. Phys. 2018, 56, 793–806. [Google Scholar] [CrossRef]
- Cai, H.; Sun, J.Y.; Gao, Z.B.; Zhang, H. A novel multi-wing chaotic system with FPGA implementation and application in image encryption. J.-Real-Time Image Process. 2022, 19, 775–790. [Google Scholar] [CrossRef]
- Wang, C.H. Dynamic Behavior Analysis and Robust Synchronization of a Novel Fractional-Order Chaotic System with Multiwing Attractors. J. Mathematics. 2021, 2021, 6684906. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, Y.C.; Li, J.Z. A Novel Four-Dimensional No-Equilibrium Hyper-Chaotic System With Grid Multiwing Hyper-Chaotic Hidden Attractors. J. Comput. Nonlinear Dynam. 2018, 13, 090908. [Google Scholar] [CrossRef]
- Sahoo, S.; Roy, B.K. A new multi-wing chaotic attractor with unusual variation in the number of wings. Chaos Solitons Fractals 2022, 164, 112598. [Google Scholar] [CrossRef]
- Tavazoei, M.S.; Haeri, M. A necessary condition for double scroll attractor existence in fractional-order systems. Phys. Lett. A 2007, 367, 102–113. [Google Scholar] [CrossRef]
- Nie, C.Y.; Wang, Z.W. Application of Chaos in Weak Signal Detection. In Proceedings of the 2011 Third International Conference on Measuring Technology and Mechatronics Automation, Shanghai, China, 6–7 January 2011. [Google Scholar]
- Faber, J.; Bozovic, D. Noise-induced chaos and signal detection by the nonisochronous Hopf oscillator. Chaos 2019, 29, 043132. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.F. Finite-time synchronization of fractional multi-wing chaotic system. Phys. Scr. 2023, 98, 115224. [Google Scholar] [CrossRef]
- Kumar, V.; Heiland, J.; Benner, P. Projective lag quasi-synchronization of coupled systems with mixed delays and parameter mismatch: A unified theory. Neural Comput. Applic. 2023, 35, 23649–23665. [Google Scholar] [CrossRef]
- Matignon, D. Stability Results For Fractional Differential Equations With Applications To Control Processing. Comput. Eng. Syst. Appl. 1997, 2, 963–968. [Google Scholar]
- Hu, J.B.; Han, Y.; Zhao, L.D. A novel stablility theorem for fractional systems and its applying in synchronizing fractional chaotic system based on back-stepping approach. Acta Phys. Sin. 2009, 58, 2235–2239. [Google Scholar]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
Equilibrium Point | State Variable x | State Variable y | State Variable z |
---|---|---|---|
0 | 0 | 0 | |
Value of Driving Signal G | Eigenvalues at Equilibrium Point | Eigenvalues at Equilibrium Point | Eigenvalues at Equilibrium Point |
---|---|---|---|
0 | −4, −1, 1 Unstable Saddle Point | −4.7186, 0.3593 ± 1.8060i Unstable Saddle Point | −4.7186, 0.3593 ± 1.8060i Unstable Saddle Point |
1 | −1, −1.5 ± 1.3229i stable Focus | 0.8128, −2.4064 ± 1.5374i Unstable Saddle Point | −5.8526, 0.9263 ± 2.3962i Unstable Saddle Point |
5 | −1, −1.5 ± 13.9194i stable Focus | 2.5574, −3.2787 ± 5.2185i Unstable Saddle Point | −8.3744, 2.1872 ± 3.2614i Unstable Saddle Point |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, H.; Feng, Y.; Wang, X.; Gao, C.; Yao, Z. Application of Fractional-Order Multi-Wing Chaotic System to Weak Signal Detection. Fractal Fract. 2024, 8, 417. https://doi.org/10.3390/fractalfract8070417
Mao H, Feng Y, Wang X, Gao C, Yao Z. Application of Fractional-Order Multi-Wing Chaotic System to Weak Signal Detection. Fractal and Fractional. 2024; 8(7):417. https://doi.org/10.3390/fractalfract8070417
Chicago/Turabian StyleMao, Hongcun, Yuling Feng, Xiaoqian Wang, Chao Gao, and Zhihai Yao. 2024. "Application of Fractional-Order Multi-Wing Chaotic System to Weak Signal Detection" Fractal and Fractional 8, no. 7: 417. https://doi.org/10.3390/fractalfract8070417
APA StyleMao, H., Feng, Y., Wang, X., Gao, C., & Yao, Z. (2024). Application of Fractional-Order Multi-Wing Chaotic System to Weak Signal Detection. Fractal and Fractional, 8(7), 417. https://doi.org/10.3390/fractalfract8070417