Non-Local Problems for the Fractional Order Diffusion Equation and the Degenerate Hyperbolic Equation
Abstract
:1. Introduction
2. Formulation of a Problem
3. Main Results
3.1. Uniqueness of the Solution of the Problem
- (a)
- (b)
- Let :
3.2. The Existence of a Solution to Problem A
4. Formulation of a Problem in Case
5. Solution Methodology
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nakhushev, A.M. Elements of Fractional Calculus and Their Application; Publishing House of the KBSC RAS: Nalchik, Russia, 2000; 299p. [Google Scholar]
- Yang, Y.; Zhang, H.H. Fractional Calculus with Its Applications in Engineering and Technology; Springer Nature: Cham, Switzerland, 2022; 95p. [Google Scholar]
- Singh, H.; Srivastava, H.M.; Nieto, J.J. Handbook of Fractional Calculus for Engineering and Science; CRC Press: Boca Raton, FL, USA, 2022; 318p. [Google Scholar]
- Gekkieva, S.K. On one analogue of the Tricomi problem for a mixed-type equation with a fractional derivative. Rep. AMAN 2001, 5, 18–22. [Google Scholar]
- Gekkieva, S.K. The Cauchy problem for the generalized transport equation with a fractional derivative in time. Rep. AMAN 2000, 5, 16–19. [Google Scholar]
- Kilbas, A.A.; Repin, O.A. An analogue of the Bitsadze–Samarsky problem for a mixed-type equation with a fractional derivative. Diff. Equ. 2003, 39, 638–644. [Google Scholar]
- Pskhu, A.V. Solution of boundary value problems for the fractional order diffusion equation by the Green’s function method. Diff. Equ. 2003, 39, 1430–1433. [Google Scholar]
- Pskhu, A.V. Solution of the boundary value problem for partial differential equations of fractional order. Diff. Equ. 2003, 39, 1092–1099. [Google Scholar]
- Yang, X.J.; Gao, F.; Ju, Y.; Zhou, H.W. Fundamental solutions of the general fractional order diffusion equations. Math. Methods Appl. Sci. 2018, 41, 9312–9320. [Google Scholar] [CrossRef]
- Liu, H.; Khan, H.; Mustafa, S.; Mou, L.; Baleanu, D. Fractional-order investigation of diffusion equations via analytical approach. Front. Phys. 2021, 8, 568554. [Google Scholar] [CrossRef]
- Parovik, R.I. Mathematical model of non-stationary diffusion-advection of radon in the soil-atmosphere system. E3S Web Conf. 2023, 462, 02023. [Google Scholar] [CrossRef]
- Tomovski, Z.; Hilfer, R.; Srivastava, H.M. Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Integ. Trans. Spec. Funct. 2010, 21, 797–814. [Google Scholar] [CrossRef]
- Hilfer, R. Experimental evidence for fractional time evolution in glass forming materials. Chem. Phys. 2002, 284, 399–408. [Google Scholar] [CrossRef]
- Tarasenko, A.V.; Egorova, I.P. On a non-local problem with a fractional Riemann–Liouville derivative for a mixed type equation. J. Samara State Tech. Univ. Ser. Phys. Math. Sci. 2017, 21, 112–121. [Google Scholar]
- Repin, O.A. On a problem for a mixed type equation with a fractional derivative. Izves. Vuz. Matem. 2018, 8, 46–51. [Google Scholar] [CrossRef]
- Ruziev, M.K.; Yuldasheva, N.T. Nonlocal boundary value problem for a mixed type equation with fractional partial derivative. J. Math. Sci. 2023, 274, 275–284. [Google Scholar] [CrossRef]
- Ruziev, M.K.; Yuldasheva, N.T. On a boundary value problem for a class of equations of mixed type. Lobachevskii J. Math. 2023, 44, 2916–2929. [Google Scholar] [CrossRef]
- Ruzhansky, M.; Tokmagambetov, N.; Torebek, B.T. Bitsadze-Samarskiy type problem for the integrodifferential diffusion-wave equation on the Heisenberg group. Integral Transform. Spec. Funct. 2019, 31, 1–9. [Google Scholar] [CrossRef]
- Li, C.; Qian, D.; Chen, Y. On Riemann-Liouville and Caputo Derivatives. Dyn. Nat. Soc. 2011, 2011, 562494. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Integrals and Derivatives of Fractional Order and Some of Their Applications; Science and Technology: Minsk, Belarus, 1987; pp. 154–196. [Google Scholar]
- Hilfer, R.; Luchko, Y.; Tomovski, Z. Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives. Fract. Calc. Appl. Anal. 2009, 12, 299–318. [Google Scholar]
- Saigo, M. A remark on integral operators involving the Gauss hypergeometric function. Math. Rep. Coll. Gen. Educ. Kyushe Univ. 1978, 11, 135–143. [Google Scholar]
- Ruziev, M.K. A boundary value problem for a partial differential equation with fractional derivative. Fract. Calc. Appl. Anal. 2021, 24, 509–517. [Google Scholar] [CrossRef]
- Ruziev, M.K.; Zunnunov, R.T. On a nonlocal problem for mixed type equation with partial Riemann–Liouville fractional derivative. Fractal Fract. 2022, 6, 110. [Google Scholar] [CrossRef]
- Pskhu, A.V. Partial Differential Equations of Fractional Order; Nauka: Moscow, Russia, 2005; 199p. [Google Scholar]
- Gekkieva, S.K. An analogue of the Tricomi problem for a mixed type equation with a fractional derivative. Izv. Kabard.-Balkar. Sci. Cent. Russ. Acad. Sci. 2001, 2, 78–80. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series. Elementary Functions; Nauka: Moscow, Russia, 1981; p. 800. [Google Scholar]
- Kilbas, A.A. Integral Equations: A Course of Lectures; BSU: Minsk, Belarus, 2005; 143p. [Google Scholar]
- Van Horn, B.M., II; Nguyen, Q. Hands-On Application Development with PyCharm: Build Applications like a Pro with the Ultimate Python Development Tool; Packt Publishing Ltd.: Birmingham, UK, 2023. [Google Scholar]
- Tverdyi, D.A.; Makarov, E.O.; Parovik, R.I. Research of stress-strain state of geo-environment by emanation methods on the example of α(t)-model of radon transport. Vestn. KRAUNC. Fiz.-Mat. Nauk. 2023, 44, 86–103. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruziev, M.; Parovik, R.; Zunnunov, R.; Yuldasheva, N. Non-Local Problems for the Fractional Order Diffusion Equation and the Degenerate Hyperbolic Equation. Fractal Fract. 2024, 8, 538. https://doi.org/10.3390/fractalfract8090538
Ruziev M, Parovik R, Zunnunov R, Yuldasheva N. Non-Local Problems for the Fractional Order Diffusion Equation and the Degenerate Hyperbolic Equation. Fractal and Fractional. 2024; 8(9):538. https://doi.org/10.3390/fractalfract8090538
Chicago/Turabian StyleRuziev, Menglibay, Roman Parovik, Rakhimjon Zunnunov, and Nargiza Yuldasheva. 2024. "Non-Local Problems for the Fractional Order Diffusion Equation and the Degenerate Hyperbolic Equation" Fractal and Fractional 8, no. 9: 538. https://doi.org/10.3390/fractalfract8090538
APA StyleRuziev, M., Parovik, R., Zunnunov, R., & Yuldasheva, N. (2024). Non-Local Problems for the Fractional Order Diffusion Equation and the Degenerate Hyperbolic Equation. Fractal and Fractional, 8(9), 538. https://doi.org/10.3390/fractalfract8090538