Fractional-Order Modeling of the Depth of Analgesia as Reference Model for Control Purposes
Abstract
:1. Introduction
- •
- Development and validation of a novel commensurate fractional-order skin impedance model;
- •
- Development and validation of a novel ‘pain index’ and its correlation to the opioid (Remifentanil) infusion rate in the absence of surgical stimuli;
- •
- Development and validation of a fractional-order transfer function for analgesia suitable for closed-loop control;
- •
- Design of a simple preliminary fractional-order controller for analgesia to test its feasibility.
2. Materials and Methods
2.1. The Patient Database
2.2. Fractional-Order Model Identification Using Frequency Response Data
2.3. Fractional-Order Model Identification Using Time Response Data
2.4. Optimization Algorithms
3. Results
3.1. The Fractional-Order Impedance Mode
3.2. The Fractional-Order Analgesia Model
3.3. Comparison with Integer-Order Analgesia Model
3.4. A Simplified Preliminary Fractional-Order Controller Design for Analgesia
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schiavo, M.; Padula, F.; Latronico, N.; Merigo, L.; Paltenghi, M.; Visioli, A. Performance evaluation of an optimized pid controller for propofol and remifentanil coadministration in general anesthesia. IFAC J. Syst. Control 2021, 15, 100121. [Google Scholar] [CrossRef]
- Dumont, G.A.; Ansermino, J.M. Closed-loop control of anesthesia: A primer for anesthesiologists. Anesth Analg. 2013, 117, 1130–1138. [Google Scholar] [CrossRef]
- Castaneda, C.E.; Orozco-Lopez, O.; Abad-Gurumeta, A.; Hernando, M.E.; Rodriguez-Herrero, A. Personalized asymmetric multiple pid to automatize the procedure of intravenous general anesthesia. J. Process Control 2023, 128, 103019. [Google Scholar] [CrossRef]
- Absalom, A.; Struys, M. An Overview of TCI and TIVA; Lannoo Publishers: Tielt, Belgium, 2020. [Google Scholar]
- Ghita, M.; Neckebroek, M.; Muresan, C.I.; Copot, D. Closed-Loop Control of Anesthesia: Survey on Actual Trends, Challenges and Perspectives. IEEE Access 2020, 8, 206264–206279. [Google Scholar] [CrossRef]
- Absalom, A.; Kenny, G.N.C. Closed Loop Control of General Anaesthesia. In On the Study and Practice of Intravenous Anaesthesia; Vuyk, J., Engbers, F., Groen-Mulder, S., Eds.; Springer: Dordrecht, The Netherlands, 2000. [Google Scholar] [CrossRef]
- Sabourdin, N.; Burey, J.; Tuffet, S.; Thomin, A.; Rousseau, A.; Al-Hawari, M.; Taconet, C.; Louvet, N.; Constant, I. Analgesia Nociception Index-Guided Remifentanil versus Standard Care during Propofol Anesthesia: A Randomized Controlled Trial. J. Clin. Med. 2022, 11, 333. [Google Scholar] [CrossRef]
- Domagalska, M.; Ciftci, B.; Kolasinski, J.; Kowalski, G.; Wieczorowska-Tobis, K. Bilateral Bi-Level Erector Spinae Plane Blocks as a Part of Opioid-Sparing Multimodal Analgesia in Scoliosis Surgery: A Case Series of Six Pediatric Patients. Medicina 2023, 59, 1429. [Google Scholar] [CrossRef]
- Nagata, O.; Matsuki, Y.; Matsuda, S.; Hazama, K.; Fukunaga, S.; Nakatsuka, H.; Yasuma, F.; Maehara, Y.; Fujioka, S.; Tajima, K.; et al. Anesthesia Management via an Automated Control System for Propofol, Remifentanil, and Rocuronium Compared to Management by Anesthesiologists: An Investigator-Initiated Study. J. Clin. Med. 2023, 12, 6611. [Google Scholar] [CrossRef]
- Gaelen, J.I.; King, M.R.; Hajduk, J.; Vargas, A.; Krodel, D.J.; Shah, R.D.; Benzon, H.A. Ultrasound-Guided Occipital Nerve Blocks as Part of Multi-Modal Perioperative Analgesia in Pediatric Posterior Craniotomies: A Case Series. Children 2023, 10, 1374. [Google Scholar] [CrossRef]
- Neckebroek, M.; Ghita, M.; Ghita, M.; Copot, D.; Ionescu, C.M. Pain Detection with Bioimpedance Methodology from 3-Dimensional Exploration of Nociception in a Postoperative Observational Trial. J. Clin. Med. 2020, 9, 684. [Google Scholar] [CrossRef] [PubMed]
- Yumuk, E.; Copot, D.; Ionescu, C.M.; Neckebroek, M. Data-driven identification and comparison of full multivariable models for propofol–remifentanil induced general anesthesia. J. Process Control 2024, 139, 103243. [Google Scholar] [CrossRef]
- Introducing the NOL (Nociception Level) Index Algorithm (2022). Available online: https://medasense.com/wp-content/uploads/The-NOL-Index-Algorithm-White-Paper.pdf (accessed on 15 February 2024).
- Coeckelenbergh, S.; Sessler, D.I.; Doria, S.; Patricio, D.; Jaubert, L.; Huybrechts, I.; Stefanidis, C.; Kapessidou, P.; Tuna, T.; Engelman, E.; et al. Nociception level index-guided antinociception versus routine care during remifentanil-propofol anaesthesia for moderate-to-high risk cardiovascular surgery: A randomized trial. Eur. J. Anaesthesiol. 2023, 40, 790–793. [Google Scholar] [CrossRef]
- Ionescu, C.M.; Copot, D.; Yumuk, E.; De Keyser, R.; Muresan, C.; Birs, I.R.; Ben Othman, G.; Farbakhsh, H.; Ynineb, A.R.; Neckebroek, M. Development, Validation, and Comparison of a Novel Nociception/Anti-Nociception Monitor against Two Commercial Monitors in General Anesthesia. Sensors 2024, 24, 2031. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Yin, Y.; Peng, G. Fractional-order viscoelastic model of musculoskeletal tissues: Correlation with fractals. Proc. R. Soc. A Math. Phys. Eng. Sci. 2021, 477, 2249. [Google Scholar] [CrossRef]
- Amilo, D.; Kaymakamzade, B.; Hincal, E. A fractional-order mathematical model for lung cancer incorporating integrated therapeutic approaches. Sci. Rep. 2023, 13, 12426. [Google Scholar] [CrossRef]
- Valentim, C.A.; Rabi, J.A.; David, S.A. Fractional Mathematical Oncology: On the potential of non-integer order calculus applied to interdisciplinary models. Biosystems 2021, 204, 104377. [Google Scholar] [CrossRef]
- Idrees, M.; Alnahdi, A.S.; Jeelani, M.B. Mathematical Modeling of Breast Cancer Based on the Caputo–Fabrizio Fractal-Fractional Derivative. Fractal Fract. 2023, 7, 805. [Google Scholar] [CrossRef]
- Vieira, L.C.; Costa, R.S.; Valério, D. An Overview of Mathematical Modelling in Cancer Research: Fractional Calculus as Modelling Tool. Fractal Fract. 2023, 7, 595. [Google Scholar] [CrossRef]
- Valentim, C.A.; Oliveira, N.A.; Rabi, J.A.; David, S.A. Can fractional calculus help improve tumor growth models? J. Comput. Appl. Math. 2020, 379, 112964. [Google Scholar] [CrossRef]
- Pinto, C.M.A.; Carvalho, A.R.M. A latency fractional order model for HIV dynamics. J. Comput. Appl. Math. 2017, 312, 240–256. [Google Scholar] [CrossRef]
- Tang, T.Q.; Jan, R.; Ahmad, H.; Vrinceanu, N.; Racheriu, M. A Fractional Perspective on the Dynamics of HIV, Considering the Interaction of Viruses and Immune System with the Effect of Antiretroviral Therapy. J. Nonlinear Math Phys. 2023, 30, 1327–1344. [Google Scholar] [CrossRef]
- Barros, L.C.D.; Lopes, M.M.; Pedro, F.S.; Esmi, E.; dos Santos, J.P.C.; Sánchez, D.E. The memory effect on fractional calculus: An application in the spread of COVID-19. Comp. Appl. Math. 2021, 40, 72. [Google Scholar] [CrossRef]
- Baleanu, D.; Hassan Abadi, M.; Jajarmi, A.; Zarghami Vahid, K.; Nieto, J.J. A new comparative study on the general fractional model of COVID-19 with isolation and quarantine effects. Alex. Eng. J. 2022, 61, 4779–4791. [Google Scholar] [CrossRef]
- Ionescu, C.M.; Lopes, A.; Copot, D.; Machado, J.A.T.; Bates, J.H.T. The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 2017, 51, 141–159. [Google Scholar] [CrossRef]
- Ghita, M.; Neckebroek, M.; Juchem, J.; Copot, D.; Muresan, C.I.; Ionescu, C.M. Bioimpedance sensor and methodology for acute pain monitoring. Sensors 2020, 20, 6765. [Google Scholar] [CrossRef]
- Dumont, G.A. Closed-Loop Control of Anesthesia—A Review. IFAC Proc. Vol. 2012, 45, 373–378. [Google Scholar] [CrossRef]
- Billard, V.; Mavoungou, P. Computer-Controlled Infusion of Neuromuscular Blocking Agents. In On the Study and Practice of Intravenous Anaesthesia; Vuyk, J., Engbers, F., Groen-Mulder, S., Eds.; Springer: Dordrecht, The Netherlands, 2000. [Google Scholar] [CrossRef]
- Lourenço, J.M.; Lemos, J.M.; Marques, J.S. Control of neuromuscular blockade with Gaussian process models. Biomed. Signal Process. Control 2013, 8, 244–254. [Google Scholar] [CrossRef]
- Costa, B.A.; Lemos, J.M. Predictive adaptive control of neuromuscular relaxation. In Proceedings of the 20th Mediterranean Conference on Control & Automation (MED), Barcelona, Spain, 3–6 July 2012; pp. 463–468. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional-order systems and PIλDμ-controllers. IEEE Trans. Autom. Control 1999, 44, 208–214. [Google Scholar] [CrossRef]
- Gharab, S.; Feliu Batlle, V. Fractional Control of a Class of Underdamped Fractional Systems with Time Delay—Application to a Teleoperated Robot with a Flexible Link. Fractal Fract. 2023, 7, 646. [Google Scholar] [CrossRef]
- Tejado, I.; Vinagre, B.M.; Traver, J.E.; Prieto-Arranz, J.; Nuevo-Gallardo, C. Back to Basics: Meaning of the Parameters of Fractional Order PID Controllers. Mathematics 2019, 7, 530. [Google Scholar] [CrossRef]
- Dahake, V.R.; Patil, M.D.; Vyawahare, V.A. Analysis of Networked Control System With Integer-order and Fractional-order PID Controllers. Int. J. Control Autom. Syst. 2024, 22, 373–386. [Google Scholar] [CrossRef]
- Zheng, W.; Chen, Y.; Wang, X.; Lin, M.; Guo, J. Robust fractional order PID controller synthesis for the first order plus integral system. Meas. Control 2023, 56, 202–214. [Google Scholar] [CrossRef]
- Tepljakov, A.; Alagoz, B.B.; Yeroglu, C.; Gonzalez, E.A.; Hassan Hosseinnia, S.; Petlenkov, E.; Ates, A.; Cech, M. Towards Industrialization of FOPID Controllers: A Survey on Milestones of Fractional-Order Control and Pathways for Future Developments. IEEE Access 2021, 9, 21016–21042. [Google Scholar] [CrossRef]
- Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu, V. Fractional-order Systems and Controls. In Fundamentals and Applications; Springer: London, UK, 2010. [Google Scholar] [CrossRef]
- Wu, Z.; Viola, J.; Luo, Y.; Chen, Y.; Li, D. Robust fractional-order [proportional integral derivative] controller design with specification constraints: More flat phase idea. Int. J. Control 2021, 97, 111–129. [Google Scholar] [CrossRef]
- Beschi, M.; Padula, F.; Visioli, A. The generalised isodamping approach for robust fractional PID controllers design. Int. J. Control 2015, 90, 1157–1164. [Google Scholar] [CrossRef]
- Mihaly, V.; Şuşcă, M.; Morar, D.; Stănese, M.; Dobra, P. μ-Synthesis for Fractional-Order Robust Controllers. Mathematics 2021, 9, 911. [Google Scholar] [CrossRef]
- ISO 14155:2020; Clinical investigation of medical devices for human subjects—Good clinical practice. ISO: Geneva, Switzerland, 2020.
- Regulation (EU) 2017/745. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32017R0745 (accessed on 11 September 2024).
- Ionescu, C.M.; De Keyser, R.; Yumuk, E.; Ynineb, A.; Ben Othman, G.; Neckebroek, M. Model Extraction From Clinical Data Subject to Large Uncertainties and Poor Identifiability. IEEE Control Syst. Lett. 2024, 8, 2151–2156. [Google Scholar] [CrossRef]
- Valerio, D.; Sa Da Costa, J. Levy’s identification method extended to fractional order transfer functions. In Proceedings of the Fifth EUROMECH Nonlinear Dynamics Conference, Eindhoven, The Netherlands, 7–12 August 2005; Available online: https://web.ist.utl.pt/duarte.valerio/ENOC05.pdf (accessed on 20 January 2024).
- Scherer, R.; Kalla, S.L.; Tang, L.; Huang, J. The Grünwald–Letnikov method for fractional differential equations. Comput. Math. Appl. 2011, 62, 902–917. [Google Scholar] [CrossRef]
- Takenaga, S.; Ozaki, Y.; Onishi, M. Practical initialization of the Nelder–Mead method for computationally expensive optimization problems. Optim. Lett. 2023, 17, 283–297. [Google Scholar] [CrossRef]
- Ozaki, Y.; Yano, M.; Onishi, M. Effective hyperparameter optimization using Nelder–Mead method in deep learning. IPSJ Trans. Comput. Vis. Appl. 2017, 9, 1–12. [Google Scholar] [CrossRef]
- Le, T.M.; Fatahi, B.; Khabbaz, H.; Sun, W. Numerical optimization applying trust-region reflective least squares algorithm with constraints to optimize the non-linear creep parameters of soft soil. Appl. Math. Model. 2017, 41, 236–256. [Google Scholar] [CrossRef]
- Ghita, M.; Birs, I.R.; Copot, D.; Muresan, C.I.; Ionescu, C.M. Bioelectrical impedance analysis of thermal-induced cutaneous nociception. Biomed. Signal Process. Control 2023, 83, 104678. [Google Scholar] [CrossRef]
- Copot, D.; Ionescu, C.M. A fractional order impedance individualised model of nociceptor stimulation. IFAC-Pap. 2018, 51, 416–421. [Google Scholar] [CrossRef]
- Soltesz, K.; Van Heusden, K.; Dumont, G.A. Models for control of intravenous anesthesia. In Automated Drug Delivery in Anesthesia; Copot, D., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 119–166. [Google Scholar] [CrossRef]
- Wahlquist, Y.; Van Heusden, K.; Dumont, G.A.; Soltesz, K. Individualized closed-loop anesthesia through patient model partitioning. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 361–364. [Google Scholar] [CrossRef]
- Soltesz, K.; Van Heusden, K.; Hast, M.; Ansermino, J.; Dumont, G.A. A synthesis method for automatic handling of inter-patient variability in closed-loop anesthesia. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 4877–4882. [Google Scholar]
- Wang, W.; Wang, P.; Zhang, X.; Wan, Y.; Liu, W.; Shi, S. Efficient and robust Levenberg–Marquardt Algorithm based on damping parameters for parameter inversion in underground metal target detection. Comput. Geosci. 2023, 176, 105354. [Google Scholar] [CrossRef]
- Marumo, N.; Okuno, T.; Takeda, A. Majorization-minimization-based Levenberg–Marquardt method for constrained nonlinear least squares. Comput. Optim. Appl. 2023, 84, 833–874. [Google Scholar] [CrossRef]
- Battershill, A.J.; Keating, G.M. Remifentanil. Drugs 2006, 66, 365–385. [Google Scholar] [CrossRef]
- Merigo, L.; Padula, F.; Latronico, N.; Paltenghi, M.; Visioli, A. Optimized PID control of propofol and remifentanil coadministration for general anesthesia. Commun. Nonlinear Sci. Numer. Simul. 2019, 72, 194–212. [Google Scholar] [CrossRef]
- Leone, M.; Albanèse, J.; Viviand, X.; Garnier, F.; Bourgoin, A.; Barrau, K.; Martine, C. The effects of remifentanil on endotracheal suctioning-induced increases in intracranial pressure in head-injured patients. Anesth Analg. 2004, 99, 1193–1198. [Google Scholar] [CrossRef]
Patient No. | Sex | Age | Height (cm) | Weight (kg) | Data Until Intubation (Seconds) |
---|---|---|---|---|---|
3 | F | 42 | 168 | 70 | 86 |
10 | M | 73 | 181 | 83 | 157 |
14 | X | 19 | 168.7 | 59 | 250 |
21 | F | 62 | 168 | 88 | 221 |
24 | F | 36 | 168 | 63 | 95 |
25 | M | 58 | 179 | 94 | 240 |
33 | F | 46 | 170 | 82 | 115 |
35 | F | 41 | 167 | 65 | 100 |
38 | F | 18 | 163 | 64 | 70 |
39 | F | 64 | 158 | 58 | 134 |
41 | F | 30 | 156 | 44 | 90 |
48 | M | 31 | 170 | 85 | 142 |
54 | F | 21 | 166 | 63 | 140 |
56 | M | 63 | 168 | 82 | 135 |
59 | F | 71 | 167 | 83 | 86 |
63 | X | 26 | 170 | 50 | 170 |
64 | F | 33 | 172 | 94 | 165 |
66 | F | 70 | 165 | 62 | 155 |
70 | X | 20 | 155 | 49 | 206 |
Number of poles na and zeros nb of the FO models | na = 4 nb = 4 | na = 3 nb = 3 | na = 2 nb = 2 | na = 4 nb = 0 | na = 3 nb = 0 | na = 2 nb = 0 |
Cost function J as defined in (6) | 5.1544 | 6.2547 | 5.6648 | 8.0844 | 7.3194 | 6.4329 |
Sample | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
q | 1.63 | 1.62 | 1.56 | 1.53 | 1.53 | 1.54 | 1.55 | 1.54 | 1.52 | 1.54 | 1.56 | 1.58 | 1.58 | 1.57 | 1.55 | 1.54 |
Patient No. | K | a1 | a2 | ISE | GOF [%] | ||
---|---|---|---|---|---|---|---|
3 | −0.636 | 14,518 | 105 | 1.9 | 0.89 | 0.006 | 35.86 |
10 | −0.33 | 21,699 | 753 | 2 | 1.16 | 0.049 | 26.81 |
14 | −0.245 | 12,650 | 285 | 1.95 | 1.09 | 0.023 | 23.98 |
21 | −0.84 | 8500 | 245 | 1.86 | 0.88 | 0.135 | 12.77 |
24 | −0.525 | 22,445 | 335 | 1.88 | 0.94 | 0.012 | 53.52 |
25 | −0.7 | 11,003 | 130 | 1.79 | 0.87 | 0.025 | 18.48 |
33 | −0.45 | 7800 | 280 | 1.93 | 1.06 | 0.018 | 24.32 |
35 | −0.715 | 3166.5 | 124.21 | 1.83 | 0.84 | 0.186 | 12.59 |
38 | −0.8 | 3961.4 | 309.46 | 2 | 1.15 | 0.369 | 5.64 |
39 | −0.11 | 1380.6 | 360.43 | 1.81 | 1.1 | 0.002 | 2.39 |
41 | −0.33 | 12,361 | 785.42 | 2 | 1.26 | 0.192 | 4.86 |
48 | −0.18 | 9500 | 470 | 1.88 | 0.88 | 0.011 | 23.20 |
54 | −0.09 | 16,742 | 287.53 | 1.86 | 0.99 | 0.001 | 16.30 |
56 | −0.2 | 9171.8 | 172.19 | 1.88 | 0.87 | 0.043 | 4.24 |
59 | −0.35 | 4063 | 22.16 | 1.95 | 0.69 | 0.019 | 23.66 |
63 | −1.38 | 5575.2 | 450 | 1.67 | 0.86 | 0.1323 | 25.66 |
64 | −0.9 | 10,400 | 340 | 1.93 | 0.87 | 0.024 | 17.11 |
66 | −0.104 | 7573 | 50.534 | 1.99 | 0.78 | 0.018 | 21.88 |
70 | −0.24 | 1087.9 | 99.38 | 1.84 | 0.89 | 0.011 | 24.95 |
Patient No. | Overshoot | Settling Time (s) |
---|---|---|
24 | 5% | 61 |
3 | 10% | 43 |
10 | 7% | 68 |
14 | 8% | 63 |
21 | 0% | 68 |
25 | 4% | 33 |
33 | 5% | 36 |
35 | 0% | 30 |
38 | 6% | 28 |
39 | 0% | >300 |
41 | 8% | 45 |
48 | 0% | >300 |
54 | 0% | 105 |
56 | 0% | 168 |
59 | 10% | 28 |
63 | 0% | 97 |
64 | 3% | 94 |
66 | 8% | >300 |
70 | 0% | >300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muresan, C.I.; Hegedüs, E.T.; Mihai, M.D.; Othman, G.B.; Birs, I.; Copot, D.; Dulf, E.H.; De Keyser, R.; Ionescu, C.M.; Neckebroek, M. Fractional-Order Modeling of the Depth of Analgesia as Reference Model for Control Purposes. Fractal Fract. 2024, 8, 539. https://doi.org/10.3390/fractalfract8090539
Muresan CI, Hegedüs ET, Mihai MD, Othman GB, Birs I, Copot D, Dulf EH, De Keyser R, Ionescu CM, Neckebroek M. Fractional-Order Modeling of the Depth of Analgesia as Reference Model for Control Purposes. Fractal and Fractional. 2024; 8(9):539. https://doi.org/10.3390/fractalfract8090539
Chicago/Turabian StyleMuresan, Cristina I., Erwin T. Hegedüs, Marcian D. Mihai, Ghada Ben Othman, Isabela Birs, Dana Copot, Eva Henrietta Dulf, Robin De Keyser, Clara M. Ionescu, and Martine Neckebroek. 2024. "Fractional-Order Modeling of the Depth of Analgesia as Reference Model for Control Purposes" Fractal and Fractional 8, no. 9: 539. https://doi.org/10.3390/fractalfract8090539
APA StyleMuresan, C. I., Hegedüs, E. T., Mihai, M. D., Othman, G. B., Birs, I., Copot, D., Dulf, E. H., De Keyser, R., Ionescu, C. M., & Neckebroek, M. (2024). Fractional-Order Modeling of the Depth of Analgesia as Reference Model for Control Purposes. Fractal and Fractional, 8(9), 539. https://doi.org/10.3390/fractalfract8090539