Bitcoin, Fintech, Energy Consumption, and Environmental Pollution Nexus: Chaotic Dynamics with Threshold Effects in Tail Dependence, Contagion, and Causality
Abstract
:1. Introduction
2. Method
2.1. TAR-TR-GARCH
2.2. TAR-TR-GARCH–Copula
2.3. Granger Causality Tests under Threshold-Type Nonlinear Heteroskedasticity
3. Materials
3.1. Data
3.2. Empirical Stages
- i.
- Long-term Dependence and Fractionality. Long-term dependence is examined with two rescaled range (R/S) tests. Fractional difference parameters are measured with two different methods. The tests are conducted with robust methods for heteroskedasticity and autocorrelation. These tests include the following:
- ○
- ○
- Covariance matrices of both R/S tests are conducted with Andrews’ method [30] for heteroskedasticity and autocorrelation-consistent covariances.
- ○
- ii.
- Largest Lyapunov Exponents, Chaotic Dynamics, Entropy, and Complexity.
- ○
- ○
- Complexity is tested with Kolmogorov–Sinai complexity [38].
- ○
- Hurst exponents are estimated for the determination of chaos, Brownian motion, and mean reversion.
- ○
- The largest Lyapunov exponents are calculated with two methods, Kantz [39] and Rosenstein–Collins–DeLuca [40]. Both methods found profound applications in the measurement of the largest Lyapunov exponent (λ). As a rule of thumb, the λ results give information on the average exponential rate of phase-space divergence or convergence of neighboring orbits.
- ⯀
- λ > 0 specifies chaos; λ ≤ 0 regular motion; λ < 0 a bifurcation; and λ > 1 deterministic chaos.
- ⯀
- In the case of λ ≤ 0 or λ > 1, copula Granger causality tests are not explored.
- ⯀
- However, when 0 < λ < 1, and Shannon, HCT, Tsallis, Rényi, and Kolmogorov–Sinai measures yield a positive value, and findings suggest an acceptable degree of uncertainty or random processes.
- iii.
- Nonlinearity Testing.
- ○
- Brock et al.’s [41] BDS test is used for independence and nonlinearity.
- ○
- Stationarity is tested with the KPSS [42], and the test is based on correlation dimensions and is accepted as being robust to structural breaks and nonlinearity.
- ○
- Unit root behavior is further tested with the nonlinear unit root test of Kapetanios et al., known as the KSS test [43].
- iv.
- Modeling of Nonlinear Contagion, Tail Dependence, and Granger Causality.
- ○
- If the variables are stationary, the TAR-TR-GARCH–copula causality method will be applied to model contagion and causality behavior in the context of copulae for tails of the dataset.
- ○
- Nonlinear heteroskedasticity in marginal processes is modeled with TAR-TR-GARCH models.
- ○
- Joint distributions are modeled with asymmetric and regime-dependent copula functions with TAR-TR-GARCH–copula.
- ○
- Causality testing is performed with TAR-TR-GARCH–copula causality tests.
4. Results
4.1. Long-Term Dependence and Fractionality
4.2. Lyapunov Exponent Results
4.3. Kolmogorov Entropy Results
4.4. Shannon Entropy, Kolmogorov–Sinai Complexity, and Hurst Exponent Results
4.5. Specific Relationships between Fractionality, Chaos, and Entropy Measures
4.6. Nonlinearity Testing
4.7. ARCH-Type Heteroskedasticity, Nonlinear Stationarity, and Unit Root Tests
4.8. The TAR-TR-GARCH–Copula Model Estimation Results
4.9. Nonlinear Copula Granger Causality Test Results
4.10. Discussion
- Nonlinear and Chaotic Dynamics. The findings revealed evidence of entropy, fractionality, chaos, and complexity in the variables under investigation. Shannon, HCT, Tsallis, and Rényi entropy and Kolmogorov–Sinai complexity measures, along with positive Lyapunov exponents, confirm the chaotic nature and unpredictability of Bitcoin prices, Fintech markets, energy consumption, and CO2 emission concentrations. The Kolmogorov–Sinai complexity metric further substantiates the existence of complex and unpredictable patterns, indicating a high degree of uncertainty and randomness in these series.
- Regime-dependent Asymmetric Causality and Contagion. The TAR-TR-GARCH–copula causality approach reveals significant regime-dependent asymmetric tail dependence:
- Strong positive tail dependence between Bitcoin, Fintech, energy consumption, and CO2 emissions highlights the substantial contagion effects, particularly during extreme market conditions.
- Significant regime-dependent Granger causality relations are determined as follows:
- ○
- Unidirectional causality from Bitcoin to CO2 emission concentrations;
- ○
- Unidirectional causality from Fintech to CO2 emission concentrations;
- ○
- Bidirectional causality in both regimes between Bitcoin and Fintech markets, indicating feedback effects and underscoring the mutual influence and interdependence between these markets.
- ○
- Unidirectional causality from energy consumption to CO2 emission concentrations observed across both low- and high-volatility regimes;
- Long-range Dependence and Persistence. Hurst exponents and the non-rejection of fractional difference parameters indicate long-range dependence and persistence in the level series of Bitcoin, Fintech markets, energy consumption of the Bitcoin network, and CO2 emission concentrations. This persistence is particularly pronounced in the volatility series, suggesting that periods of high or low volatility are likely to be followed by similar periods. Further, findings of the study indicate evidence of mean reversion in the first-differenced series, particularly for CO2 and Fintech, which exhibit tendencies towards anti-persistence.
- Complex and Nonlinear Contagion and Causality Relations Evident under Upper and Lower Tails. The empirical findings confirmed the chaotic dynamics, underscoring the inherent unpredictability and complexity within these variables. Notably, the complex relations cannot be disregarded given the regime-dependent asymmetric causality and strong positive tail dependence at both the upper and lower tails of the datasets in regimes 1 and 2, the former characterized by low volatility and the latter by high volatility.
4.11. Policy Implications
4.12. Characteristics of the Methods and Possible Directions for Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
ARCH | Autoregressive conditional heteroskedasticity |
AIC | Akaike information criterion |
ARCH-LM | Lagrange multiplier test statistic for ARCH effects |
BDS | Brock, Deckert, and Scheinkman independence and nonlinearity test |
BTC | Bitcoin price |
CO2 | Global carbon dioxide emissions |
EC | Energy consumption from the Bitcoin network |
FIN | Global Fintech stock index |
GARCH | Generalized autoregressive conditional heteroskedasticity |
HCT | Havdra–Charvat–Tsallis entropy |
LogL | Log-likelihood |
LSTM | Long short-term memory deep neural networks |
NN-GARCH | Neural networks–GARCH |
R/S | Range/scale test |
SIC | Schwarz information criterion |
TAR-TR-GARCH–copula causality | Threshold autoregressive-threshold-generalized autoregressive conditional heteroskedasticity–copula causality |
References
- Lorenz, E.N. Deterministic Nonperiodic Flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Ruelle, D.; Takens, F. On the Nature of Turbulence. Commun. Math. Phys. 1971, 20, 167–192. [Google Scholar] [CrossRef]
- Guckenheimer, J.; Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields; Springer: Berlin/Heidelberg, Germany, 1983; Volume 42. [Google Scholar] [CrossRef]
- Kumar, U.; Prakash, A.; Jain, V.K. Characterization of Chaos in Air Pollutants: A Volterra–Wiener–Korenberg Series and Numerical Titration Approach. Atmos. Env. 2008, 42, 1537–1551. [Google Scholar] [CrossRef]
- Yu, B.; Huang, C.; Liu, Z.; Wang, H.; Wang, L. A Chaotic Analysis on Air Pollution Index Change over Past 10 Years in Lanzhou, Northwest China. Stoch. Environ. Res. Risk Assess. 2011, 25, 643–653. [Google Scholar] [CrossRef]
- Chakraborty, A.; Veeresha, P. Effects of Global Warming, Time Delay and Chaos Control on the Dynamics of a Chaotic Atmospheric Propagation Model within the Frame of Caputo Fractional Operator. Commun. Nonlinear Sci. Numer. Simul. 2024, 128, 107657. [Google Scholar] [CrossRef]
- Bildirici, M.E. Chaotic Dynamics on Air Quality and Human Health: Evidence from China, India, and Turkey. Nonlinear Dyn. Psychol. Life Sci. 2021, 25, 207–236. [Google Scholar]
- Ucan, Y.; Bildirici, M. Air Temperature Measurement Based on Lie Group SO(3). Therm. Sci. 2022, 26, 3089–3095. [Google Scholar] [CrossRef]
- de Vries, A. Bitcoin’s Energy Consumption Is Underestimated: A Market Dynamics Approach. Energy Res. Soc. Sci. 2020, 70, 101721. [Google Scholar] [CrossRef]
- de Vries, A.; Gallersdörfer, U.; Klaaßen, L.; Stoll, C. Revisiting Bitcoin’s Carbon Footprint. Joule 2022, 6, 498–502. [Google Scholar] [CrossRef]
- de Vries, A. Renewable Energy Will Not Solve Bitcoin’s Sustainability Problem. Joule 2019, 3, 893–898. [Google Scholar] [CrossRef]
- Wendl, M.; Doan, M.H.; Sassen, R. The Environmental Impact of Cryptocurrencies Using Proof of Work and Proof of Stake Consensus Algorithms: A Systematic Review. J. Env. Manag. 2023, 326, 116530. [Google Scholar] [CrossRef] [PubMed]
- Kohli, V.; Chakravarty, S.; Chamola, V.; Sangwan, K.S.; Zeadally, S. An Analysis of Energy Consumption and Carbon Footprints of Cryptocurrencies and Possible Solutions. Digit. Commun. Netw. 2023, 9, 79–89. [Google Scholar] [CrossRef]
- Digiconomist Bitcoin Energy Consumption Index—Digiconomis. Available online: https://digiconomist.net/bitcoin-energy-consumption (accessed on 14 March 2023).
- Badea, L.; Mungiu-Pupazan, M.C. The Economic and Environmental Impact of Bitcoin. IEEE Access 2021, 9, 48091–48104. [Google Scholar] [CrossRef]
- Jiang, S.; Li, Y.; Lu, Q.; Hong, Y.; Guan, D.; Xiong, Y.; Wang, S. Policy Assessments for the Carbon Emission Flows and Sustainability of Bitcoin Blockchain Operation in China. Nat. Commun. 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Ersin, Ö.Ö.; Bildirici, M.E. Are Cleaner Energy and Financial Technologies Needed? Contagion and Causality Evidence between Global Fintech Markets, Energy Consumption, and Environmental Pollution. Clean. Technol. Env. Policy 2024, 1–15. [Google Scholar] [CrossRef]
- Bildirici, M. The Chaotic Behavior among the Oil Prices, Expectation of Investors and Stock Returns: TAR-TR-GARCH Copula and TAR-TR-TGARCH Copula. Pet. Sci. 2019, 16, 217–228. [Google Scholar] [CrossRef]
- Bildirici, M.; Ersin, O.; Onat, I.Ş. Examination of the Predictability of BDI and VIX: A Threshold Approach. Int. J. Transp. Econ. 2019, XLVI, 9–28. [Google Scholar] [CrossRef]
- Hansen, B.E. Sample Splitting and Threshold Estimation. Econometrica 2000, 68, 575–603. [Google Scholar] [CrossRef]
- Boubaker, H.; Sghaier, N.; Boubaker, H.; Sghaier, N. Markov-Switching Time-Varying Copula Modeling of Dependence Structure between Oil and GCC Stock Markets. Open J. Stat. 2016, 6, 565–589. [Google Scholar] [CrossRef]
- Kim, J.M.; Lee, N.; Hwang, S.Y. A Copula Nonlinear Granger Causality. Econ. Model. 2020, 88, 420–430. [Google Scholar] [CrossRef]
- Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica 1969, 37, 424. [Google Scholar] [CrossRef]
- Bildirici, M.E.; Salman, M.; Ersin, Ö.Ö. Nonlinear Contagion and Causality Nexus between Oil, Gold, VIX Investor Sentiment, Exchange Rate and Stock Market Returns: The MS-GARCH Copula Causality Method. Mathematics 2022, 10, 4035. [Google Scholar] [CrossRef]
- Bildirici, M.; Ersin, Ö.Ö.; Ibrahim, B. Chaos, Fractionality, Nonlinear Contagion, and Causality Dynamics of the Metaverse, Energy Consumption, and Environmental Pollution: Markov-Switching Generalized Autoregressive Conditional Heteroskedasticity Copula and Causality Methods. Fractal Fract. 2024, 8, 114. [Google Scholar] [CrossRef]
- Hurst, H.E. Long-Term Storage Capacity of Reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–799. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. Statistical Methodology for Nonperiodic Cycles: From the Covariance to R/S Analysis. Ann. Econ. Soc. Meas. 1972, 1, 259–290. [Google Scholar]
- Mandelbrot, B.B.; Wallis, J.R. Robustness of the Rescaled Range R/S in the Measurement of Noncyclic Long Run Statistical Dependence. Water Resour. Res. 1969, 5, 967–988. [Google Scholar] [CrossRef]
- Lo, A.W. Long-Term Memory in Stock Market Prices. Econometrica 1991, 59, 1279. [Google Scholar] [CrossRef]
- Andrews, D.W.K. Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation. Econometrica 1991, 59, 817. [Google Scholar] [CrossRef]
- Geweke, J.; Porter-Hudak, S. The Estimation and Application of Long Memory Time Series Models. J. Time Ser. Anal. 1983, 4, 221–238. [Google Scholar] [CrossRef]
- Phillips, P. Discrete Fourier Transforms of Fractional Processes; Cowles Foundation Discussion Papers; Emerald Group Publishing Limited: Leeds, UK, 1999. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Rényi, A. On Measures of Entropy and Information. In Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability, 20 June–30 July 1960; Neyman, J., Ed.; University of California Press: Berkeley, CA, USA, 1961; Volume 4.1, pp. 547–562. [Google Scholar]
- Tsallis, C. Possible Generalization of Boltzmann-Gibbs Statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Havrda, J.; Charvât, F. Quantification Method of Classification Processes Concept of Structural «-Entropy. Kybernetica 1967, 3, 30–35. [Google Scholar]
- Tsallis, C.; Mendes, R.S.; Plastino, A.R. The Role of Constraints within Generalized Nonextensive Statistics. Phys. A Stat. Mech. Appl. 1998, 261, 534–554. [Google Scholar] [CrossRef]
- Baptista, M.S.; Ngamga, E.J.; Pinto, P.R.F.; Brito, M.; Kurths, J. Kolmogorov–Sinai Entropy from Recurrence Times. Phys. Lett. A 2010, 374, 1135–1140. [Google Scholar] [CrossRef]
- Kantz, H. A Robust Method to Estimate the Maximal Lyapunov Exponent of a Time Series. Phys. Lett. A 1994, 185, 77–87. [Google Scholar] [CrossRef]
- Rosenstein, M.T.; Collins, J.J.; De Luca, C.J. A Practical Method for Calculating Largest Lyapunov Exponents from Small Data Sets. Phys. D 1993, 65, 117–134. [Google Scholar] [CrossRef]
- Brock, W.A.; Dechert, W.D.; Scheinkman, J.A. A Test for Independence Based on the Correlation Dimension; University of Wisconsin, Social Systems Research Unit: Madison, WI, USA, 1987. [Google Scholar]
- Kwiatkowski, D.; Phillips, P.C.B.; Schmidt, P.; Shin, Y. Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root? J. Econ. 1992, 54, 159–178. [Google Scholar] [CrossRef]
- Kapetanios, G.; Shin, Y.; Snell, A. Testing for a Unit Root in the Nonlinear STAR Framework. J. Econ. 2003, 112, 359–379. [Google Scholar] [CrossRef]
- Engle, R.F. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica 1982, 50, 987. [Google Scholar] [CrossRef]
- Kaspar, F.; Schuster, H.G. Easily Calculable Measure for the Complexity of Spatiotemporal Patterns. Phys. Rev. A 1987, 36, 842. [Google Scholar] [CrossRef]
- Masthay, M.; Benton, C.; Guerrieri, L.; Keil, R.; Masthay, M.; Benton, C.; Guerrieri, L.; Keil, R. The Tsallis Entropic Index as a Measure of Distance from Thermal Equilibrium in Paramagnetic Spin Lattices. In Nanomaterials and Nanostructures—Annual; IntechOpen: London, UK, 2024; Volume 2024, ISBN 978-0-85014-199-3. [Google Scholar]
- Beran, J. On a Class of M-Estimators for Gaussian Long-Memory Models. Biometrika 1994, 81, 755–766. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov Exponents from a Time Series. Phys. D 1985, 16, 285–317. [Google Scholar] [CrossRef]
- Feldman, D.P.; Crutchfield, J.P. Measures of Statistical Complexity: Why? Phys. Lett. A 1998, 238, 244–252. [Google Scholar] [CrossRef]
- Bildirici, M.E. Chaos Structure and Contagion Behavior between COVID-19, and the Returns of Prices of Precious Metals and Oil: MS-GARCH-MLP Copula. Nonlinear Dyn. Psychol. Life Sci. 2022, 26, 209–230. [Google Scholar]
- Bishop, C. Neural Networks for Pattern Recognition, 1st ed.; Oxford University Press: New York, NY, USA, 1995; Volume 5, ISBN 9780198538646. [Google Scholar]
- González-Rivera, G. Smooth-Transition GARCH Models. Stud. Nonlinear Dyn. Econom. 1998, 3. [Google Scholar] [CrossRef]
- Teräsvirta, T. Specification, Estimation, and Evaluation of Smooth Transition Autoregressive Models. J. Am. Stat. Assoc. 1994, 89, 208–218. [Google Scholar] [CrossRef]
- Conrad, C.; Custovic, A.; Ghysels, E. Long- and Short-Term Cryptocurrency Volatility Components: A GARCH-MIDAS Analysis. J. Risk Financ. Manag. 2018, 11, 23. [Google Scholar] [CrossRef]
- Ersin, Ö.Ö.; Bildirici, M. Financial Volatility Modeling with the GARCH-MIDAS-LSTM Approach: The Effects of Economic Expectations, Geopolitical Risks and Industrial Production during COVID-19. Mathematics 2023, 11, 1785. [Google Scholar] [CrossRef]
- Donaldson, R.G.; Kamstra, M. An Artificial Neural Network-GARCH Model for International Stock Return Volatility. J. Empir. Financ. 1997, 4, 17–46. [Google Scholar] [CrossRef]
- Bildirici, M.; Ersin, Ö.Ö. Improving Forecasts of GARCH Family Models with the Artificial Neural Networks: An Application to the Daily Returns in Istanbul Stock Exchange. Expert. Syst. Appl. 2009, 36, 7355–7362. [Google Scholar] [CrossRef]
- Hu, Y.; Ni, J.; Wen, L. A Hybrid Deep Learning Approach by Integrating LSTM-ANN Networks with GARCH Model for Copper Price Volatility Prediction. Phys. A Stat. Mech. Appl. 2020, 557, 124907. [Google Scholar] [CrossRef]
Variables in Levels | First Differences 1 | |||||||
---|---|---|---|---|---|---|---|---|
BTC | EC | CO2 | FIN | ΔBTC | ΔEC | ΔCO2 | ΔFIN | |
Mean | 7.9469 | 0.6058 | 6.0138 | 5.8193 | 0.0021 | 0.0017 | 0.0000 | 0.0006 |
Med 2 | 8.7626 | 1.4444 | 6.0142 | 5.9380 | 0.0013 | 0.0029 | 0.0000 | 0.0009 |
Max | 11.1991 | 3.0222 | 6.0605 | 6.6272 | 1.4742 | 0.5131 | 0.0101 | 0.1107 |
Min | 1.8406 | −5.1985 | 5.9671 | 4.5915 | −0.8488 | −0.3710 | −0.0106 | −0.1388 |
SD | 2.3526 | 2.0115 | 0.0218 | 0.5893 | 0.0522 | 0.0309 | 0.0016 | 0.0122 |
S | −0.5977 | −0.9682 | −0.0565 | −0.4565 | 4.3700 | −0.0766 | 0.1410 | −0.5648 |
K | 2.4713 | 3.1742 | 2.0624 | 1.9680 | 186.8476 | 45.1815 | 8.4050 | 14.8286 |
JB | 311.90 | 690.01 | 143.10 | 243.9158 | 6,183,840.0 | 324,796.0 | 4700.3 | 18,137.2 |
p | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Variables in Levels | ||||
---|---|---|---|---|
Statistics: | BTC | EC | CO2 | FIN |
Hurst–Mandelbrot’s R/S 1 | 28.7 *** | 28.0 *** | 25.9 *** | 24.3 *** |
Lo’s modified R/S | 3.07 *** | 3.07 *** | 3.01 *** | 2.77 *** |
d parameter (GPH) 2 t statistic p, H0: d = 0 | 0.963081 *** 24.0699 0.000 | 1.0178 *** 17.7349 0.000 | 0.966206 *** 21.1036 0.000 | 1.0261 *** 25.6480 0.000 |
d parameter (Phillips) t statistic p, H0: d = 0 | 0.9948 *** 11.8826 0.000 | 0.9173 *** 10.8852 0.000 | 0.9229 *** 7.5987 0.000 | 0.8981 *** 9.5373 0.000 |
First-differenced | ||||
Hurst–Mandelbrot’s R/S | 1.32 | 2.39 *** | 0.346 | 1.08 |
Lo’s modified R/S | 1.31 | 1.32 | 0.345 | 1.07 |
d parameter (GPH) t statistic p, H0: d = 0 | 0.087555 1.0892 0.280 | −0.117578 −1.4941 0.140 | 0.055637 0.4575 0.649 | −0.024553 −0.2507 0.803 |
d parameter (Phillips) t statistic p, H0: d = 0 | 0.0641901 0.7869 0.434 | −0.002346 −0.0255 0.980 | 0.1021 * 1.95225 0.000 | 0.1067214 0.9322 0.355 |
Volatility | ||||
Hurst–Mandelbrot’s R/S | 2.16 *** | 4.84 *** | 2.21 *** | 3.96 *** |
Lo’s modified R/S | 1.88 ** | 2.3 *** | 1.55 | 1.74 * |
d parameter (GPH) t statistic p, H0: d = 0 | 0.059604 ** 2.3613 0.021 | 0.095537 * 1.6936 0.095 | 0.290907 *** 3.1380 0.003 | 0.165445 *** 5.6241 0.000 |
d parameter (Phillips) t statistic p, H0: d = 0 | 0.0130452 0.5085 0.613 | 0.0519135 0.9739 0.334 | 0.4856908 *** 5.3014 0.000 | 0.1805063 *** 6.1596 0.000 |
BTC | EC | CO2 | FIN | |
---|---|---|---|---|
Kantz [39] 1 | 0.88 *** | 0.56 *** | 0.69 *** | 0.45 *** |
Rosenstein et al. [40] | 0.56 *** | 0.556 *** | 0.59 *** | 0.42 *** |
Kolmogorov Entropy | Eckman–Ruelle Condition Satisfied? | Chaotic? | |
---|---|---|---|
BTC | 0.39 | YES | YES |
FIN | 0.50 | YES | YES |
EC | 0.44 | YES | YES |
CO2 | 0.59 | YES | YES |
Shannon | 1/Shannon | Rényi | HCT 1 | Kolmogorov–Sinai Complexity | Hurst Exponent | |
---|---|---|---|---|---|---|
Variables in levels | ||||||
BTC | 2.2891 | 0.4368 | 2.2941 | 3.5770 | 11.3929 | 0.9987 |
EC | 3.8818 | 0.2576 | 2.4311 | 8.3719 | 12.0114 | 0.9984 |
CO2 | 2.3026 | 0.4343 | 2.3190 | 3.5791 | 8.6387 | 0.9973 |
FIN | 2.3010 | 0.4346 | 2.3015 | 3.5311 | 11.1691 | 0.9978 |
Variables in first differences (daily % change) | ||||||
BTC | 4.3285 | 0.2310 | 1.2276 | 18.0076 | 11.8264 | 0.5706 |
EC | 3.9269 | 0.2547 | 1.2166 | 17.3454 | 12.0363 | 0.5992 |
CO2 | 11.9356 | 0.0838 | 1.4681 | 38.3030 | 11.7285 | 0.2627 |
FIN | 4.6180 | 0.2165 | 1.2660 | 17.8724 | 11.5713 | 0.4872 |
Volatility series (daily realized variance) | ||||||
BTC | 0.6557 | 1.5251 | 0.8115 | 4.2355 | 11.7519 | 0.9006 |
EC | 0.7356 | 1.3594 | 0.8498 | 4.8556 | 12.0335 | 0.9255 |
CO2 | 0.8321 | 1.2017 | 0.8860 | 5.3459 | 11.6088 | 0.7805 |
FIN | 0.8277 | 1.2082 | 0.8923 | 5.1616 | 11.5638 | 0.8513 |
BTC | ||||||
Entropy 1 | q = 0 | q = 0.2 | q = 0.4 | q = 0.6 | q = 0.8 | q = 1.0 |
Tsallis | 3.577 | 3.257 | 2.972 | 2.718 | 2.491 | 2.289 |
Shannon (q = 1) | - | - | - | - | - | 2.289 |
EC | ||||||
q = 0 | q = 0.2 | q = 0.4 | q = 0.6 | q = 0.8 | q = 1.0 | |
Tsallis | 8.372 | 8.619 | 9.358 | 11.262 | 17.713 | 3.882 |
Shannon (q = 1) | - | - | - | - | - | 3.882 |
CO2 | ||||||
Tsallis | 3.579 | 3.262 | 2.980 | 2.728 | 2.504 | 2.303 |
Shannon (q = 1) | - | - | - | - | - | 2.303 |
FIN | ||||||
Tsallis | 3.531 | 3.228 | 2.956 | 2.714 | 2.496 | 2.301 |
Shannon | - | - | - | - | - | 2.301 |
Variables in Levels | ||||||||
BTC | CO2 | FIN | EC | |||||
Dim. 1 | BDS | se | BDS | se | BDS | se | BDS | se |
2 | 0.2064 *** | 0.0008 | 0.1971 *** | 0.0007 | 0.2046 *** | 0.0009 | 0.2069 *** | 0.0012 |
3 | 0.3510 *** | 0.0013 | 0.3362 *** | 0.0011 | 0.3484 *** | 0.0013 | 0.3514 *** | 0.0018 |
4 | 0.4522 *** | 0.0015 | 0.4333 *** | 0.0013 | 0.4493 *** | 0.0016 | 0.4521 *** | 0.0021 |
5 | 0.5229 *** | 0.0016 | 0.5010 *** | 0.0014 | 0.5200 *** | 0.0017 | 0.5220 *** | 0.0022 |
6 | 0.5721 *** | 0.0015 | 0.5479 *** | 0.0013 | 0.5694 *** | 0.0016 | 0.5704 *** | 0.0021 |
Variables in First Differences | ||||||||
Dim. | BDS | se | BDS | se | BDS | se | BDS | se |
2 | 0.0255 *** | 0.0017 | 0.0229 *** | 0.0017 | 0.0221 *** | 0.0016 | 0.0358 *** | 0.0013 |
3 | 0.0490 *** | 0.0027 | 0.0408 *** | 0.0027 | 0.0446 *** | 0.0026 | 0.0570 *** | 0.0020 |
4 | 0.0647 *** | 0.0032 | 0.0524 *** | 0.0032 | 0.0609 *** | 0.0031 | 0.0665 *** | 0.0024 |
5 | 0.0742 *** | 0.0033 | 0.0578 *** | 0.0033 | 0.0693 *** | 0.0032 | 0.0686 *** | 0.0025 |
6 | 0.0790 *** | 0.0032 | 0.0582 *** | 0.0032 | 0.0729 *** | 0.0031 | 0.0657 *** | 0.0025 |
Level Series | ||||
Test: 1 | BTC | CO2 | FIN | EC |
ARCH-LM (1) | 1895.42 *** | 845.12 *** | 5129.12 *** | 904.22 *** |
ARCH-LM (1–5) | 952.11 *** | 682.14 *** | 4486.85 *** | 592.46 *** |
Result: | ARCH effects | ARCH effects | ARCH effects | ARCH effects |
KPSS | 7.4773 | 7.1541 | 6.7159 | 7.2480 |
Result: | Non- stationary | Non- stationary | Non- stationary | Non- stationary |
KSS | −1.9766 | −0.9064 | −1.0263 | −2.3848 * |
Result: | Nonlinear unit root | Nonlinear unit root | Nonlinear unit root | Nonlinear unit root |
First-Differenced Series | ||||
BTC | CO2 | FIN | EC | |
ARCH-LM (1) | 7.9214 ** | 288.8419 *** | 473.1748 *** | 1903.0540 *** |
ARCH-LM (1–5) | 118.2135 *** | 63.3936 *** | 207.0430 *** | 397.9321 *** |
Result: | ARCH effects | ARCH effects | ARCH effects | ARCH effects |
KPSS | 0.3071 *** | 0.0162 *** | 0.2629 *** | 0.2196 *** |
Result: | Stationary | Stationary | Stationary | Stationary |
KSS | −26.1182 *** | −25.1553 *** | −12.6214 *** | −9.4215 *** |
Result: | Stationary | Stationary | Stationary | Stationary |
Conditional Mean Process | ||||||||
BTC | FIN | EC | CO2 | |||||
Regimes: | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
Const. | 0.31 *** | 0.456 *** | 0.284 *** | 0.42 *** | −0.09 *** | 0.12 *** | 0.29 *** | 0.33 *** |
p | (0.00) | (0.00) | (0.000) | (0.001) | (0.00) | (0.00) | (0.00) | (0.00) |
AR(1) | 0.105 *** | 0.173 *** | 0.097 *** | 0.19 *** | 0.105 *** | 0.173 *** | 0.093 *** | 0.065 *** |
p | (0.00) | (0.00) | (0.00) | (0.04) | (0.00) | (0.00) | (0.00) | (0.00) |
Conditional Variance Process | ||||||||
Const. | 0.0448 *** | 0.123 *** | 0.0360 *** | 0.118 *** | 0.068 *** | 0.147 *** | 0.113 *** | 0.155 *** |
p | (0.00) | (0.000) | (0.00) | (0.01) | (0.00) | (0.00) | (0.00) | (0.00) |
ARCH | 0.13 *** | 0.13 *** | 0.22 *** | 0.28 *** | 0.26 *** | 0.161 *** | 0.311 *** | 0.271 *** |
p | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) |
GARCH | 0.74 *** | 0.79 *** | 0.69 *** | 0.68 *** | 0.681 *** | 0.801 *** | 0.657 *** | 0.682 *** |
p | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) | (0.00) |
Threshold | 0.04085 *** | 0.038145 *** | 0.0314 *** | 0.0254 *** | ||||
p | (0.00) | (0.00) | (0.00) | (0.00) | ||||
Stability condition 1 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Copula Results: (SJC Copula) | ||||||||
BT-EC | FIN-EC | |||||||
Regimes: | 1 | 2 | 1 | 2 | ||||
Lower Upper | 0.81 *** 0.84 *** | 0.831 *** 0.873 *** | 0.807 *** 0.806 *** | 0.818 *** 0.861 *** | ||||
BT-FIN | BT-CO2 | |||||||
Regimes: | 1 | 2 | 1 | 2 | ||||
Lower Upper | 0.707 *** 0.718 *** | 0.82 *** 0.84 *** | 0.697 ** 0.73 *** | 0.87 *** 0.69 ** | ||||
FIN-CO2 | EC-CO2 | |||||||
Regimes: | 1 | 2 | 1 | 2 | ||||
Lower Upper | 0.66 ** 0.603 ** | 0.65 ** 0.62 ** | 0.68 ** 0.63 ** | 0.708 *** 0.695 ** | ||||
Diagnostic Tests | ||||||||
LogL 2 | 669.54 | 754.263 | 654.92 | 712.218 | ||||
AIC | −2.33 | −4.77 | −2.03 | −4.06 | ||||
ARCH-LM | 0.3129 | 0.497 | 0.3055 | 0.467 |
Tested Direction of Causality | Regime 1 | Determined Direction | Regime 2 | Determined Direction |
---|---|---|---|---|
CO2→BTC BTC→CO2 | 1.19 1 | BTC→CO2 Unidirectional | 1.59 | Unidirectional BTC→CO2 |
3.85 *** | 4.88 *** | |||
FIN→CO2 CO2→FIN | 3.19 *** | Unidirectional FIN→CO2 | 5.14 *** | Unidirectional FIN→CO2 |
1.26 | 1.26 | |||
BTC→FIN FIN→BTC | 3.18 *** | Bi-directional | 4.77 *** | Bi-directional |
2.88 *** | 3.87 *** | |||
BTC→EC EC→BTC | 5.842 *** | Unidirectional BTC→EC | 3.85 *** | Unidirectional BTC→EC |
1.245 | 0.27 | |||
FIN→EC EC→FIN | 4.403 *** | Unidirectional FIN→EC | 3.77 *** | Unidirectional FIN→EC |
1.19 | 0.94 | |||
EC→CO2 CO2→EC | 3.56 *** | Unidirectional EC→ CO2 | 3.098 *** | Unidirectional EC→ CO2 |
1.008 | 1.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bildirici, M.E.; Ersin, Ö.Ö.; Uçan, Y. Bitcoin, Fintech, Energy Consumption, and Environmental Pollution Nexus: Chaotic Dynamics with Threshold Effects in Tail Dependence, Contagion, and Causality. Fractal Fract. 2024, 8, 540. https://doi.org/10.3390/fractalfract8090540
Bildirici ME, Ersin ÖÖ, Uçan Y. Bitcoin, Fintech, Energy Consumption, and Environmental Pollution Nexus: Chaotic Dynamics with Threshold Effects in Tail Dependence, Contagion, and Causality. Fractal and Fractional. 2024; 8(9):540. https://doi.org/10.3390/fractalfract8090540
Chicago/Turabian StyleBildirici, Melike E., Özgür Ömer Ersin, and Yasemen Uçan. 2024. "Bitcoin, Fintech, Energy Consumption, and Environmental Pollution Nexus: Chaotic Dynamics with Threshold Effects in Tail Dependence, Contagion, and Causality" Fractal and Fractional 8, no. 9: 540. https://doi.org/10.3390/fractalfract8090540
APA StyleBildirici, M. E., Ersin, Ö. Ö., & Uçan, Y. (2024). Bitcoin, Fintech, Energy Consumption, and Environmental Pollution Nexus: Chaotic Dynamics with Threshold Effects in Tail Dependence, Contagion, and Causality. Fractal and Fractional, 8(9), 540. https://doi.org/10.3390/fractalfract8090540