Multifractal Structures and the Energy-Economic Efficiency of Chinese Cities: Using a Classification-Based Multifractal Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methods
- (1)
- The CMFA method: identifying urban multifractal structures
- (2)
- Geodetector: Optimizing the urban spatial structures
- (3)
- Uncertainty of the results
3. Results and Discussions
3.1. Multifractal Structures of 290 Cities
3.2. The Typical Multifractal Structures of the 290 Cities
3.3. The Optimized Multifractal Structures of the 290 Cities
3.4. Suggestions for Optimizing Urban Multifractal Structures
3.5. Limitations and Future Directions
4. Conclusions
- (1)
- There are six typical multifractal structures of the 290 Chinese cities. The explanatory power of these six typical multifractal structures for GDP, GDP per capita, and GDP per unit of electricity consumption is 10.51%, 23.51%, and 17.15%, respectively. On average, the explanatory power of the six typical multifractal structures on the energy-economic indicators is 16.27%.
- (2)
- The optimized multifractal structure of cities satisfies the following quadratic polynomial equation: . The spatial structure performance of a given city can be determined by comparing its multifractal structure with the optimized multifractal structure. The main structural problems included an overly strong or weak concentration capacity of high-level centers, weak hierarchical structures in centers, and the spreading of low-level centers.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meijers, E.J.; Burger, M.J. Spatial Structure and Productivity in US Metropolitan Areas. Environ. Plan. A Econ. Space 2010, 42, 1383–1402. [Google Scholar] [CrossRef]
- Rao, Y.; Yang, J.; Dai, D.; Wu, K.; He, Q. Urban growth pattern and commuting efficiency: Empirical evidence from 100 Chinese cities. J. Clean. Prod. 2021, 302, 126994. [Google Scholar] [CrossRef]
- Li, W.; Sun, B.; Zhang, T.; Zhang, Z. Panacea, placebo or pathogen? An evaluation of the integrated performance of polycentric urban structures in the Chinese prefectural city-regions. Cities 2022, 125, 103624. [Google Scholar] [CrossRef]
- Sun, B.; Han, S.; Li, W. Effects of the polycentric spatial structures of Chinese city regions on CO2 concentrations. Transp. Res. Part D Transp. Environ. 2020, 82, 102333. [Google Scholar] [CrossRef]
- Han, S.; Sun, B.; Zhang, T. Mono- and polycentric urban spatial structure and PM2.5 concentrations: Regarding the dependence on population density. Habitat Int. 2020, 104, 102257. [Google Scholar] [CrossRef]
- She, Q.; Peng, X.; Xu, Q.; Long, L.; Wei, N.; Liu, M.; Jia, W.; Zhou, T.; Han, J.; Xiang, W. Air quality and its response to satellite-derived urban form in the Yangtze River Delta, China. Ecol. Indic. 2017, 75, 297–306. [Google Scholar] [CrossRef]
- Adolphson, M. Estimating a Polycentric Urban Structure. Case Study: Urban Changes in the Stockholm Region 1991–2004. J. Urban Plan. Dev. 2009, 135, 19–30. [Google Scholar] [CrossRef]
- Christaller, W. Central Places in Southern Germany; Prentice Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
- Ren, Z.; Jiang, B.; De Rijke, C.; Seipel, S. Characterizing the livingness of geographic space across scales using global nighttime light data. Int. J. Appl. Earth Obs. Geoinf. 2024, 133, 104136. [Google Scholar] [CrossRef]
- Man, X.; Chen, Y. Fractal-Based Modeling and Spatial Analysis of Urban Form and Growth: A Case Study of Shenzhen in China. ISPRS Int. J. Geo-Inf. 2020, 9, 672. [Google Scholar] [CrossRef]
- Murcio, R.; Masucci, A.P.; Arcaute, E.; Batty, M. Multifractal to monofractal evolution of the London street network. Phys. Rev. E 2015, 92, 062130. [Google Scholar] [CrossRef]
- Jiang, B.; De Rijke, C. Structural Beauty: A Structure-Based Computational Approach to Quantifying the Beauty of an Image. J. Imaging 2021, 7, 78. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; De Rijke, C. Living Images: A Recursive Approach to Computing the Structural Beauty of Images or the Livingness of Space. Ann. Am. Assoc. Geogr. 2023, 113, 1329–1347. [Google Scholar] [CrossRef]
- Pacheco, P.; Mera, E.; Navarro, G.; Parodi, C. Urban Meteorology, Pollutants, Geomorphology, Fractality, and Anomalous Diffusion. Fractal Fract. 2024, 8, 204. [Google Scholar] [CrossRef]
- Agostinho, F.; Costa, M.; Coscieme, L.; Almeida, C.M.V.B.; Giannetti, B.F. Assessing cities growth-degrowth pulsing by emergy and fractals: A methodological proposal. Cities 2021, 113, 103162. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, Y. Scaling laws and indications of self-organized criticality in urban systems. Chaos Solitons Fractals 2008, 35, 85–98. [Google Scholar] [CrossRef]
- Jiang, B.; Wei, H.; Feng, Y. Controversies Concerning Emergency Tracheal Intubation in Patients with COVID-19. J. Anesth. Transl. Med. 2023, 2, 15–18. [Google Scholar] [CrossRef]
- Lu, C.; Liu, Y. Effects of China’s urban form on urban air quality. Urban Stud. 2016, 53, 2607–2623. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z. Fractality and Self-Similarity in the Structure of Road Networks. Ann. Assoc. Am. Geogr. 2012, 102, 350–365. [Google Scholar] [CrossRef]
- Guo, S.; Pei, T.; Xie, S.; Song, C.; Chen, J.; Liu, Y.; Shu, H.; Wang, X.; Yin, L. Fractal dimension of job-housing flows: A comparison between Beijing and Shenzhen. Cities 2021, 112, 103120. [Google Scholar] [CrossRef]
- Jiang, B. Head/tail breaks for visualization of city structure and dynamics. Cities 2015, 43, 69–77. [Google Scholar] [CrossRef]
- Jiang, B.; Yin, J. Ht-Index for Quantifying the Fractal or Scaling Structure of Geographic Features. Ann. Assoc. Am. Geogr. 2014, 104, 530–540. [Google Scholar] [CrossRef]
- Long, Y.; Chen, Y. Multifractal scaling analyses of urban street network structure: The cases of twelve megacities in China. PLoS ONE 2021, 16, e0246925. [Google Scholar] [CrossRef]
- Salat, H.; Murcio, R.; Yano, K.; Arcaute, E. Uncovering inequality through multifractality of land prices: 1912 and contemporary Kyoto. PLoS ONE 2018, 13, e0196737. [Google Scholar] [CrossRef] [PubMed]
- Sémécurbe, F.; Tannier, C.; Roux, S.G. Spatial Distribution of Human Population in France: Exploring the Modifiable Areal Unit Problem Using Multifractal Analysis. Geogr. Anal. 2016, 48, 292–313. [Google Scholar] [CrossRef]
- Tan, X.; Huang, B.; Batty, M.; Li, J. Urban Spatial Organization, Multifractals, and Evolutionary Patterns in Large Cities. Ann. Am. Assoc. Geogr. 2021, 111, 1539–1558. [Google Scholar] [CrossRef]
- Wang, J.; Lu, F.; Liu, S. A classification-based multifractal analysis method for identifying urban multifractal structures considering geographic mapping. Comput. Environ. Urban Syst. 2023, 101, 101952. [Google Scholar] [CrossRef]
- Lu, Y.; Tang, J. Fractal Dimension of a Transportation Network and its Relationship with Urban Growth: A Study of the Dallas-Fort Worth Area. Environ. Plan. B Plan. Des. 2004, 31, 895–911. [Google Scholar] [CrossRef]
- Lan, T.; Li, Z.; Zhang, H. Urban Allometric Scaling Beneath Structural Fractality of Road Networks. Ann. Am. Assoc. Geogr. 2019, 109, 943–957. [Google Scholar] [CrossRef]
- Lan, T.; Peng, Q.; Wang, H.; Gong, X.; Li, J.; Shi, Z. Exploring Allometric Scaling Relations between Fractal Dimensions of Metro Networks and Economic, Environmental and Social Indicators: A Case Study of 26 Cities in China. ISPRS Int. J. Geo-Inf. 2021, 10, 429. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, Y.; Yang, R. Influence of different geographical factors on carbon sink functions in the Pearl River Delta. Sci. Rep. 2017, 7, 110. [Google Scholar] [CrossRef]
- Cao, W.; Dong, L.; Wu, L.; Liu, Y. Quantifying urban areas with multi-source data based on percolation theory. Remote Sens. Environ. 2020, 241, 111730. [Google Scholar] [CrossRef]
- Liu, S.; Shen, J.; Liu, G.; Wu, Y.; Shi, K. Exploring the effect of urban spatial development pattern on carbon dioxide emissions in China: A socioeconomic density distribution approach based on remotely sensed nighttime light data. Comput. Environ. Urban Syst. 2022, 96, 101847. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X. How did urban polycentricity and dispersion affect economic productivity? A case study of 306 Chinese cities. Landsc. Urban Plan. 2018, 173, 51–59. [Google Scholar] [CrossRef]
- Wang, J.; Lu, F. Modeling the electricity consumption by combining land use types and landscape patterns with nighttime light imagery. Energy 2021, 234, 121305. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J. An extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from a cross-sensor calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Xu, X. China GDP Spatial Distribution Kilometer Grid Dataset, Resource and Environmental Science Data Registration and Publishing System. 2017. Available online: http://www.resdc.cn/DOI (accessed on 25 January 2025).
- Rose, A.; McKee, J.; Sims, K.; Bright, E.; Reith, A.; Urban, M. LandScan Global 2019 [Data Set]. Oak Ridge National Laboratory, 2020. Available online: https://landscan.ornl.gov/ (accessed on 25 January 2025).
- Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Nassar, Y.F.; Alsadi, S.Y.; El-Khozondar, H.J.; Ismail, M.S.; Al-Maghalseh, M.; Khatib, T.; Sa’ed, J.A.; Mushtaha, M.H.; Djerafi, T. Design of an isolated renewable hybrid energy system: A case study. Mater. Renew. Sustain. Energy 2022, 11, 225–240. [Google Scholar] [CrossRef]
- He, P.; Wang, Q.-C.; Shen, G.Q. The Carbon Emission Implications of Intensive Urban Land Use in Emerging Regions: Insights from Chinese Cities. Urban Sci. 2024, 8, 75. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, Y.; Li, M.; Yu, Q.; Chen, W. Spatial structure and carbon emission of urban agglomerations: Spatiotemporal characteristics and driving forces. Sustain. Cities Soc. 2022, 78, 103600. [Google Scholar] [CrossRef]
- Lin, D.; Allan, A.; Cui, J. The impact of polycentric urban development on commuting behaviour in urban China: Evidence from four sub-centres of Beijing. Habitat Int. 2015, 50, 195–205. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, B.; Li, W. The economic performance of urban structure: From the perspective of Polycentricity and Monocentricity. Cities 2017, 68, 18–24. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, B.; Zhang, T. Do polycentric urban regions promote functional spillovers and economic performance? Evidence from China. Reg. Stud. 2022, 56, 63–74. [Google Scholar] [CrossRef]
- Melo, P.C.; Graham, D.J.; Levinson, D.; Aarabi, S. Agglomeration, accessibility and productivity: Evidence for large metropolitan areas in the US. Urban Stud. 2017, 54, 179–195. [Google Scholar] [CrossRef]
- Parr, J.B. Cities and Regions: Problems and Potentials. Environ. Plan. A Econ. Space 2008, 40, 3009–3026. [Google Scholar] [CrossRef]
- Li, W.; Sun, B.; Zhao, J.; Zhang, T. Economic performance of spatial structure in Chinese prefecture regions: Evidence from night-time satellite imagery. Habitat Int. 2018, 76, 29–39. [Google Scholar] [CrossRef]
- Chen, Y. Fractal dimension evolution and spatial replacement dynamics of urban growth. Chaos Solitons Fractals 2012, 45, 115–124. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, L. Modeling growth curve of fractal dimension of urban form of Beijing. Phys. A Stat. Mech. Its Appl. 2019, 523, 1038–1056. [Google Scholar] [CrossRef]
- Gao, B.; Yang, J.; Chen, Z.; Sugihara, G.; Li, M.; Stein, A.; Kwan, M.-P.; Wang, J. Causal inference from cross-sectional earth system data with geographical convergent cross mapping. Nat. Commun. 2023, 14, 5875. [Google Scholar] [CrossRef]
For GDP | |||||
2 Classes | 3 Classes | 4 Classes | 5 Classes | 6 Classes | |
q statistic | 4.22% | 8.10% | 8.08% | 7.62% | 10.51% |
p value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
7 Classes | 8 Classes | 9 Classes | 10 Classes | ||
q statistic | 10.02% | 10.02% | 12.52% | 13.62% | |
p value | 0.000 | 0.000 | 0.000 | 0.000 | |
For GDP Per Capita | |||||
2 Classes | 3 Classes | 4 Classes | 5 Classes | 6 Classes | |
q statistic | 5.70% | 14.75% | 18.16% | 17.34% | 23.51% |
p value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
7 Classes | 8 Classes | 9 Classes | 10 Classes | ||
q statistic | 21.00% | 21.28% | 24.05% | 21.11% | |
p value | 0.000 | 0.000 | 0.000 | 0.000 | |
For GDP Per Unit of Electricity Consumption | |||||
2 Classes | 3 Classes | 4 Classes | 5 Classes | 6 Classes | |
q statistic | 4.08% | 10.87% | 12.93% | 11.29% | 17.15% |
p value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
7 Classes | 8 Classes | 9 Classes | 10 Classes | ||
q statistic | 15.38% | 15.46% | 17.02% | 17.17% | |
p value | 0.000 | 0.000 | 0.000 | 0.000 |
GDP | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
1 | ||||||
2 | N | |||||
3 | N | Y | ||||
4 | Y | Y | Y | |||
5 | N | Y | Y | Y | ||
6 | N | Y | Y | Y | Y | |
GDP per capita | 1 | 2 | 3 | 4 | 5 | 6 |
1 | ||||||
2 | N | |||||
3 | N | Y | ||||
4 | Y | Y | Y | |||
5 | Y | Y | Y | Y | ||
6 | N | N | Y | Y | Y | |
GDP per unit of electricity consumption | 1 | 2 | 3 | 4 | 5 | 6 |
1 | ||||||
2 | N | |||||
3 | N | Y | ||||
4 | Y | Y | Y | |||
5 | N | Y | Y | Y | ||
6 | N | N | Y | Y | Y |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Meng, B.; Lu, F. Multifractal Structures and the Energy-Economic Efficiency of Chinese Cities: Using a Classification-Based Multifractal Method. Fractal Fract. 2025, 9, 96. https://doi.org/10.3390/fractalfract9020096
Wang J, Meng B, Lu F. Multifractal Structures and the Energy-Economic Efficiency of Chinese Cities: Using a Classification-Based Multifractal Method. Fractal and Fractional. 2025; 9(2):96. https://doi.org/10.3390/fractalfract9020096
Chicago/Turabian StyleWang, Jiaxin, Bin Meng, and Feng Lu. 2025. "Multifractal Structures and the Energy-Economic Efficiency of Chinese Cities: Using a Classification-Based Multifractal Method" Fractal and Fractional 9, no. 2: 96. https://doi.org/10.3390/fractalfract9020096
APA StyleWang, J., Meng, B., & Lu, F. (2025). Multifractal Structures and the Energy-Economic Efficiency of Chinese Cities: Using a Classification-Based Multifractal Method. Fractal and Fractional, 9(2), 96. https://doi.org/10.3390/fractalfract9020096