Slow-Release Fertilisers Control N Losses but Negatively Impact on Agronomic Performances of Pasture: Evidence from a Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Meta-Analysis
3. Results and Discussion
3.1. The Overview of the Dataset
3.2. Nitrogen Losses
3.2.1. Nitrate Leaching Losses
3.2.2. Ammonium Leaching Losses
3.2.3. Nitrous Oxide Emission
3.3. Dry Matter Yield of Pasture
3.4. Herbage Nitrogen of Pasture
3.5. Nitrogen Utilization Efficiency
4. Limitations of This Study
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Caradus, J.R.; Goldson, S.L.; Moot, D.J.; Rowarth, J.S.; Stewart, A.V. Pastoral agriculture, a significant driver of New Zealand’s economy, based on an introduced grassland ecology and technological advances. J. R. Soc. N. Z. 2023, 53, 259–303. [Google Scholar] [CrossRef] [PubMed]
- Hacker, R.B.; McDonald, S.E. Prospects for sustainable use of the pastoral areas of Australia’s southern rangelands: A synthesis. Rangel. J. 2021, 43, 185–209. [Google Scholar] [CrossRef]
- Hua, L.; Squires, V.R. Managing China’s pastoral lands: Current problems and future prospects. Land Use Policy 2015, 43, 129–137. [Google Scholar] [CrossRef]
- Jägermeyr, J. Agriculture’s historic twin-challenge toward sustainable water use and food supply for all. Front. Sustain. Food Syst. 2020, 4, 35. [Google Scholar] [CrossRef]
- Kumar, A.; Mangla, S.K.; Kumar, P.; Karamperidis, S. Challenges in perishable food supply chains for sustainability management: A developing economy perspective. Bus. Strategy Environ. 2020, 29, 1809–1831. [Google Scholar] [CrossRef]
- Vaintrub, M.O.; Levit, H.; Chincarini, M.; Fusaro, I.; Giammarco, M.; Vignola, G. Precision livestock farming, automats and new technologies: Possible applications in extensive dairy sheep farming. Animal 2021, 15, 100143. [Google Scholar] [CrossRef]
- Hedley, C. The role of precision agriculture for improved nutrient management on farms. J. Sci. Food Agric. 2015, 95, 12–19. [Google Scholar] [CrossRef]
- McCurdy, M.; Davies, C.; Gunaratnam, A.; Grafton, M.; Bishop, P.; Jeyakumar, P. Instrumentation of a bank of lysimeters: Sensors and sensibility. In Proceedings of the Chemeca 2019, Sydney, Australia, 29 September–2 October 2019. [Google Scholar]
- Abhiram, G.; Bishop, P.; Jeyakumar, P.; Grafton, M.; Davies, C.E.; McCurdy, M. Formulation and characterization of polyester-lignite composite coated slow-release fertilizers. J. Coat. Technol. Res. 2023, 20, 307–320. [Google Scholar] [CrossRef]
- Abhiram, G.; Grafton, M.; Jeyakumar, P.; Bishop, P.; Davies, C.E.; McCurdy, M. The nitrogen dynamics of newly developed lignite-based controlled-release fertilisers in the soil-plant cycle. Plants 2022, 11, 3288. [Google Scholar] [CrossRef]
- Berça, A.S.; Romanzini, E.P.; da Silva Cardoso, A.; Ferreira, L.E.; D’Aurea, A.P.; Fernandes, L.B.; Reis, R.A. Advances in pasture management and animal nutrition to optimize beef cattle production in grazing systems. In Animal Feed Science and Nutrition-Production, Health and Environment; IntechOpen: London, UK, 2021. [Google Scholar]
- Chmelíková, L.; Schmid, H.; Anke, S.; Hülsbergen, K.-J. Nitrogen-use efficiency of organic and conventional arable and dairy farming systems in Germany. Nutr. Cycl. Agroecosystems 2021, 119, 337–354. [Google Scholar] [CrossRef]
- Dentler, J.; Kiefer, L.; Hummler, T.; Bahrs, E.; Elsaesser, M. The impact of low-input grass-based and high-input confinement-based dairy systems on food production, environmental protection and resource use. Agroecol. Sustain. Food Syst. 2020, 44, 1089–1110. [Google Scholar] [CrossRef]
- Gnaratnam, A.; McCurdy, M.; Grafton, M.; Jeyakumar, P.; Bishop, P.; Davies, C. Assessment of Nitrogen Fertilizers Under Controlled Environment—A Lysimeter Design; Fertilizer and Lime Research Centre, Massey University: Palmerston North, New Zealand, 2019. [Google Scholar]
- Swify, S.; Mažeika, R.; Baltrusaitis, J.; Drapanauskaitė, D.; Barčauskaitė, K. modified urea fertilizers and their effects on improving nitrogen use efficiency (NUE). Sustainability 2023, 16, 188. [Google Scholar] [CrossRef]
- Abhiram, G. Contributions of Nano-Nitrogen Fertilizers to Sustainable Development Goals: A Comprehensive Review. Nitrogen 2023, 4, 397–415. [Google Scholar] [CrossRef]
- Gil-Ortiz, R.; Naranjo, M.Á.; Ruiz-Navarro, A.; Caballero-Molada, M.; Atares, S.; García, C.; Vicente, O. New eco-friendly polymeric-coated urea fertilizers enhanced crop yield in wheat. Agronomy 2020, 10, 438. [Google Scholar] [CrossRef]
- Dorieh, A.; Selakjani, P.P.; Shahavi, M.H.; Pizzi, A.; Movahed, S.G.; Pour, M.F.; Aghaei, R. Recent developments in the performance of micro/nanoparticle-modified urea-formaldehyde resins used as wood-based composite binders: A review. Int. J. Adhes. Adhes. 2022, 114, 103106. [Google Scholar] [CrossRef]
- Sharma, B.; Shrivastava, M.; Afonso, L.O.; Soni, U.; Cahill, D.M. Zinc-and magnesium-doped hydroxyapatite nanoparticles modified with urea as smart nitrogen fertilizers. ACS Appl. Nano Mater. 2022, 5, 7288–7299. [Google Scholar] [CrossRef]
- Beig, B.; Niazi, M.B.K.; Jahan, Z.; Kakar, S.J.; Shah, G.A.; Shahid, M.; Zia, M.; Haq, M.U.; Rashid, M.I. Biodegradable polymer coated granular urea slows down N release kinetics and improves spinach productivity. Polymers 2020, 12, 2623. [Google Scholar] [CrossRef]
- Kalita, A.; Elayarajan, M.; Janaki, P.; Suganya, S.; Sankari, A.; Parameswari, E. Organo-monomers coated slow-release fertilizers: Current understanding and future prospects. Int. J. Biol. Macromol. 2024, 274, 133320. [Google Scholar] [CrossRef]
- Priya, E.; Sarkar, S.; Maji, P.K. A Review on Slow-Release Fertilizer: Nutrient Release Mechanism and Agricultural Sustainability. J. Environ. Chem. Eng. 2024, 12, 113211. [Google Scholar]
- Suman, J.; Rakshit, A.; Patra, A.; Dutta, A.; Tripathi, V.K.; Mohapatra, K.K.; Tiwari, R.; Krishnamoorthi, S. Enhanced Efficiency N Fertilizers: An Effective Strategy to Improve Use Efficiency and Ecological Sustainability. J. Soil Sci. Plant Nutr. 2023, 23, 1472–1488. [Google Scholar] [CrossRef]
- Bishop, P.; Liu, H.; Hedley, M.; Loganathan, P. New Zealand Made Controlled Release Coated Urea Increases Winter Growth Rates of Italian Ryegrass with Lower N Leaching than Uncoated Urea; New Zealand Grassland Association: Dunedin, New Zealand, 2008; pp. 85–89. [Google Scholar]
- Vallejo, A.; Cartagena, M.C.; Rodriguez, D.; Diez, J. Nitrogen availability of soluble and slow release nitrogen fertilizers as assessed by electroultrafiltration. Fertil. Res. 1993, 34, 121–126. [Google Scholar] [CrossRef]
- Volk, G.; Horn, G. Response Curves of Various Turfgrasses to Application of Several Controlled-Release Nitrogen Sources 1. Agron. J. 1975, 67, 201–204. [Google Scholar] [CrossRef]
- Abhiram, G.; Grafton, M.; Jeyakumar, P.; Bishop, P.; Davies, C.E.; McCurdy, M. Iron-rich sand promoted nitrate reduction in a study for testing of lignite based new slow-release fertilisers. Sci. Total Environ. 2023, 864, 160949. [Google Scholar] [CrossRef] [PubMed]
- Thapa, R.; Chatterjee, A.; Awale, R.; McGranahan, D.A.; Daigh, A. Effect of enhanced efficiency fertilizers on nitrous oxide emissions and crop yields: A meta-analysis. Soil Sci. Soc. Am. J. 2016, 80, 1121–1134. [Google Scholar] [CrossRef]
- Lü, H.-D.; Wang, X.-Y.; Pan, Z.-L.; Zhao, S.-C. Assessment of the crucial factors influencing the responses of ammonia and nitrous oxide emissions to controlled release nitrogen fertilizer: A meta-analysis. J. Integr. Agric. 2023, 22, 3549–3559. [Google Scholar] [CrossRef]
- Nugawela, N.; Mahaliyana, A.; Abhiram, G.; Abeygunawardena, A. A meta-analytic review of microplastic pollution in the Indian Ocean: Ecological health and seafood safety risk implications. Mar. Pollut. Bull. 2023, 193, 115213. [Google Scholar] [CrossRef]
- Rohatgi, A. WebPlotDigitizer, Version 5.0. 2015. Available online: https://automeris.io/posts/version_5/ (accessed on 6 November 2024).
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Review Manager 5 (RevMan 5), version 5.4; The Cochrane Collaboration: Copenhagen, Denmark, 2024.
- Schünemann, H.J.; Vist, G.E.; Higgins, J.P.; Santesso, N.; Deeks, J.J.; Glasziou, P.; Akl, E.A.; Guyatt, G.H.; Group, C.G.M. Interpreting results and drawing conclusions. In Cochrane Handbook for Systematic Reviews of Interventions; The Cochrane Collaboration: London, UK, 2019; pp. 403–431. [Google Scholar]
- Bowman, D.; Paul, J. Absorption of three slow-release nitrogen fertilizers by perennial ryegrass turf. Fertil. Res. 1991, 29, 309–316. [Google Scholar] [CrossRef]
- Easton, Z.M.; Petrovic, A.M. Fertilizer source effect on ground and surface water quality in drainage from turfgrass. J. Environ. Qual. 2004, 33, 645–655. [Google Scholar] [CrossRef]
- Garcia, C.; Garcia, L.; Vallejo, A.; Cartagena, M.; Díez, J. Forecasting by laboratory tests of nitrogen leached and absorbed in soil-plant system with urea-based controlled-release fertilizers coated with lignin. Commun. Soil Sci. Plant Anal. 1998, 29, 2479–2491. [Google Scholar] [CrossRef]
- Rodrigues, M.Â.; Santos, H.; Ruivo, S.; Arrobas, M. Slow-release N fertilisers are not an alternative to urea for fertilisation of autumn-grown tall cabbage. Eur. J. Agron. 2010, 32, 137–143. [Google Scholar] [CrossRef]
- Scott, N.M.; Fraser, A.R.; Russell, J.D. Ammonia-treated vermiculite–an efficient controlled-release nitrogenous fertiliser for a variety of crops. J. Sci. Food Agric. 1983, 34, 233–238. [Google Scholar] [CrossRef]
- Arrobas, M.; Angelo, R.M. Agronomic evaluation of a fertilizer with D-CODER technology: A new mechanism for the slow release of nutrients. J. Agr. Sci. Tech. 2013, 15, 409–419. [Google Scholar]
- Edmeades, D. The evaluation of a controlled release nitrogen fertiliser. J. N. Z. Grassl. 2015, 147–152. [Google Scholar] [CrossRef]
- Suter, H.; Lam, S.K.; Walker, C.; Chen, D.; Grace, P. Benefits from enhanced-efficiency nitrogen fertilisers in rainfed temperate pastures are seasonally driven. Soil Res. 2021, 60, 147–157. [Google Scholar] [CrossRef]
- Suter, H.; Lam, S.K.; Walker, C.; Chen, D. Enhanced efficiency fertilisers reduce nitrous oxide emissions and improve fertiliser 15N recovery in a Southern Australian pasture. Sci. Total Environ. 2020, 699, 134147. [Google Scholar] [CrossRef]
- Dobbie, K.E.; Smith, K.A. Impact of different forms of N fertilizer on N2O emissions from intensive grassland. Nutr. Cycl. Agroecosyst. 2003, 67, 37–46. [Google Scholar] [CrossRef]
- Cox, D.; Addiscott, T.M. Sulphur-coated urea as a fertiliser for potatoes. J. Sci. Food Agric. 1976, 27, 1015–1020. [Google Scholar] [CrossRef]
- Weiss, P.J.; Meisen, A. Laboratory studies on sulphur-coating urea by the spouted bed process. Can. J. Chem. Eng. 1983, 61, 440–447. [Google Scholar] [CrossRef]
- Saleem, M.M. Effect of Sulphur Coated Urea and Urea on the Productivity and Nitrogen Utilization of Cynodon IB. 8. East Afr. Agric. For. J. 1977, 43, 25–30. [Google Scholar] [CrossRef]
- Trenkel, M. Slow-and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Effiiency in Agriculture; International Fertilizer Industry Association (IFA): Paris, France, 2021. [Google Scholar]
- Wang, Z.-H.; Li, S.-X. Nitrate N loss by leaching and surface runoff in agricultural land: A global issue (A review). Adv. Agron. 2019, 156, 159–217. [Google Scholar]
- Cameron, K.; Di, H.; Condron, L. Nutrient and pesticide transfer from agricultural soils to water in New Zealand. In Agriculture, Hydrology and Water Quality; CABI: Wallingford, UK, 2002; pp. 373–393. [Google Scholar]
- Egusa, M.; Matsukawa, S.; Miura, C.; Nakatani, S.; Yamada, J.; Endo, T.; Ifuku, S.; Kaminaka, H. Improving nitrogen uptake efficiency by chitin nanofiber promotes growth in tomato. Int. J. Biol. Macromol. 2020, 151, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.J.; Lin, X.; Zhu, J.; He, H.; Li, L. Environmental effects on ammonium adsorption onto clay minerals: Experimental constraints and applications. Appl. Clay Sci. 2023, 246, 107165. [Google Scholar] [CrossRef]
- Cui, M.; Zeng, L.; Qin, W.; Feng, J. Measures for reducing nitrate leaching in orchards: A review. Environ. Pollut. 2020, 263, 114553. [Google Scholar] [CrossRef] [PubMed]
- Tei, F.; De Neve, S.; de Haan, J.; Kristensen, H.L. Nitrogen management of vegetable crops. Agric. Water Manag. 2020, 240, 106316. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, Z.; Cui, J.; Liu, Z.; Chen, Z.; Zhou, J. Strategies to mitigate nitrate leaching in vegetable production in China: A meta-analysis. Environ. Sci. Pollut. Res. 2020, 27, 18382–18391. [Google Scholar] [CrossRef]
- Reeves, S.; Wang, W.; Ginns, S. Mitigate N2O emissions while maintaining sugarcane yield using enhanced efficiency fertilisers and reduced nitrogen rates. Nutr. Cycl. Agroecosystems 2024, 128, 325–340. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, L.; Xu, Y.; Yang, Y.; Shi, R. Application of controlled release urea improved grain yield and nitrogen use efficiency: A meta-analysis. PLoS ONE 2020, 15, e0241481. [Google Scholar] [CrossRef]
- Shaviv, A.; Mikkelsen, R. Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation—A review. Fertil. Res. 1993, 35, 1–12. [Google Scholar] [CrossRef]
- Morton, J.; Tillman, R.; Morton, A. Review of research on pasture yield responses to fine particle application of fertiliser in New Zealand. N. Z. J. Agric. Res. 2019, 62, 210–223. [Google Scholar] [CrossRef]
- Hill, J.; Simpson, R.; Moore, A.; Chapman, D. Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition. Plant Soil 2006, 286, 7–19. [Google Scholar] [CrossRef]
- Gunaratnam, A. Design and Fabrication of a Climate-Controlled Lysimeter and Testing of New Controlled-Release Fertilisers. Ph.D. Thesis, Agricultural Engineering and Environmental Sciences, Massey University, Palmerston North, New Zealand, 2021. [Google Scholar]
- Farmaha, B.S.; Sims, A.L. Yield and protein response of wheat cultivars to polymer-coated urea and urea. Agron. J. 2013, 105, 229–236. [Google Scholar] [CrossRef]
- Farmaha, B.S.; Sims, A.L. The influence of polymer-coated urea and urea fertilizer mixtures on spring wheat protein concentrations and economic returns. Agron. J. 2013, 105, 1328–1334. [Google Scholar] [CrossRef]
- Du, C.W.; Zhou, J.M.; Shaviv, A. Release characteristics of nutrients from polymer-coated compound controlled release fertilizers. J. Polym. Environ. 2006, 14, 223–230. [Google Scholar] [CrossRef]
- Alexander, A.; Helm, H.U. Ureaform as a slow release fertilizer: A review. Z. Für Pflanzenernährung Und Bodenkd. 1990, 153, 249–255. [Google Scholar] [CrossRef]
- Yamamoto, C.F.; Pereira, E.I.; Mattoso, L.H.; Matsunaka, T.; Ribeiro, C. Slow release fertilizers based on urea/urea–formaldehyde polymer nanocomposites. Chem. Eng. J. 2016, 287, 390–397. [Google Scholar] [CrossRef]
- Balashanmugavel, B.; Subramani, M.; Vunnam, V.; Kasiviswanathan, S.C.B. Synthesis, characterization and analysis of biodegradable polymer-coated urea fertilizers for controlled nutrient release. Polym. Bull. 2024, 81, 1–17. [Google Scholar] [CrossRef]
- Beig, B.; Niazi, M.B.K.; Jahan, Z.; Zia, M.; Shah, G.A.; Iqbal, Z. Biodegradable polymer encapsulated nickel nanoparticles for slow release urea promotes Rhode grass yield and nitrogen recovery. J. Polym. Environ. 2023, 31, 1866–1883. [Google Scholar] [CrossRef]
- Chen, M.; Schievano, A.; Bosco, S.; Montero-Castaño, A.; Tamburini, G.; Pérez-Soba, M.; Makowski, D. Evidence map of the benefits of enhanced-efficiency fertilisers for the environment, nutrient use efficiency, soil fertility, and crop production. Environ. Res. Lett. 2023, 18, 043005. [Google Scholar] [CrossRef]
- Bedaso, N.H.; Bezabih, M.; Zewdu Kelkay, T.; Adie, A.; Khan, N.A.; Jones, C.S.; Mekonnen, K.; Wolde-meskel, E. Effect of fertilizer inputs on productivity and herbage quality of native pasture in degraded tropical grasslands. Agron. J. 2022, 114, 216–227. [Google Scholar] [CrossRef]
- Chand, S.; Indu; Singhal, R.K.; Govindasamy, P. Agronomical and breeding approaches to improve the nutritional status of forage crops for better livestock productivity. Grass Forage Sci. 2022, 77, 11–32. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Adhikari, R.; Casey, P.; Muster, T.; Gill, H.; Adhikari, B. Enhanced efficiency fertilisers: A review of formulation and nutrient release patterns. J. Sci. Food Agric. 2015, 95, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Aziz, M.E.; Salama, D.M.; Morsi, S.M.; Youssef, A.M.; El-Sakhawy, M. Development of polymer composites and encapsulation technology for slow-release fertilizers. Rev. Chem. Eng. 2022, 38, 603–616. [Google Scholar] [CrossRef]
- Huett, D.O.; Gogel, B.J. Longevities and nitrogen, phosphorus, and potassium release patterns of polymer-coated controlled-release fertilizers at 30 °C and 40 °C. Commun. Soil Sci. Plant Anal. 2000, 31, 959–973. [Google Scholar] [CrossRef]
- Govil, S.; Long, N.V.D.; Escribà-Gelonch, M.; Hessel, V. Controlled-release fertiliser: Recent developments and perspectives. Ind. Crops Prod. 2024, 219, 119160. [Google Scholar] [CrossRef]
- Rubio, J.; Hauck, R. Uptake and use patterns of nitrogen from urea, oxamide, and isobutylidene diurea by rice plants. Plant Soil 1986, 94, 109–123. [Google Scholar] [CrossRef]
- Martinez, C.; Clarke, D.; Dang, Y.P.; Janke, C.; Bell, M.J. Integrated field assessment of nitrogen release dynamics and crop recovery of band-applied controlled-release fertilisers. Plant Soil 2021, 466, 257–273. [Google Scholar] [CrossRef]
- Vellinga, T.V.; André, G. Sixty years of Dutch nitrogen fertiliser experiments, an overview of the effects of soil type, fertiliser input, management and of developments in time. Neth. J. Agric. Sci. 1999, 47, 215–241. [Google Scholar] [CrossRef]
- Ren, C.; Zhang, X.; Reis, S.; Wang, S.; Jin, J.; Xu, J.; Gu, B. Climate change unequally affects nitrogen use and losses in global croplands. Nat. Food 2023, 4, 294–304. [Google Scholar] [CrossRef]
- Detmann, E.; Valente, É.E.; Batista, E.D.; Huhtanen, P. An evaluation of the performance and efficiency of nitrogen utilization in cattle fed tropical grass pastures with supplementation. Livest. Sci. 2014, 162, 141–153. [Google Scholar] [CrossRef]
- Chilundo, M.; Joel, A.; Wesström, I.; Brito, R.; Messing, I. Effects of reduced irrigation dose and slow release fertiliser on nitrogen use efficiency and crop yield in a semi-arid loamy sand. Agric. Water Manag. 2016, 168, 68–77. [Google Scholar] [CrossRef]
- Ke, J.; Xing, X.; Li, G.; Ding, Y.; Dou, F.; Wang, S.; Liu, Z.; Tang, S.; Ding, C.; Chen, L. Effects of different controlled-release nitrogen fertilisers on ammonia volatilisation, nitrogen use efficiency and yield of blanket-seedling machine-transplanted rice. Field Crops Res. 2017, 205, 147–156. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, Z.; He, X.; Wang, X.; Shi, X.; Zou, C.; Chen, X. The effects of controlled release urea on maize productivity and reactive nitrogen losses: A meta-analysis. Environ. Pollut. 2019, 246, 559–565. [Google Scholar] [CrossRef] [PubMed]
CRNF/SRNF | Experiment Type | Application Rate | DM Yield | Agronomic N Efficiency (kg DM kg−1) | Leaching Loss Control | N2O Loss Control | Country | Reference |
---|---|---|---|---|---|---|---|---|
Polyurethane coated urea (5 and 7%) | Field trial | 50 and 150 | NSI | 22–24 | SI | N/A | New Zealand | [24] |
Dicyandiamide coated Urea (10% coating) | Field trial | 50 and 150 | NSI | 12–15 | SI | N/A | New Zealand | [24] |
Coron | Greenhouse (NSCS) | 84 | SD (30%) | N/A | N/A | N/A | USA | [35] |
N-Sure | Greenhouse (NSCS) | 84 | SD (30%) | N/A | N/A | N/A | USA | [35] |
Nitrazine | Greenhouse (NSCS) | 84 | SD (40%) | N/A | N/A | N/A | USA | [35] |
Lesco sulfur-coated urea | Field trial | 50 and 100 | N/A | N/A | NSI | N/A | USA | [36] |
Floranid Komplett (FK) | Pot experiment | 300 mg N/pot | SI | SI | SI | N/A | Spain | [25] |
CDU (crotonylidendiurea) | Pot experiment | 300 mg N/pot | NSI | NSI | NSI | N/A | Spain | [25] |
Triabon (CDU+Urea) | Pot experiment | 300 mg N/pot | SI | SI | SI | N/A | Spain | [25] |
Lignin coated urea CRFs (16–34%) | Pot experiment | SI | SI | SI | N/A | Spain | [37] | |
Ureaform | Field plot trial | 3 kg-N/season | N/A | SI | N/A | N/A | USA | [26] |
IBDU | Field plot trial | 3 kg-N/season | N/A | SI | N/A | N/A | USA | [26] |
SCU | Field plot trial | 3 kg-N/season | N/A | SI | N/A | N/A | USA | [26] |
IBDU | Field plot trial | 120 | NSI | NSI | N/A | N/A | Portugal | [38] |
Ammonia-treated vermiculite (ATV) | Pot trial | 500 | NSI | NSI | N/A | N/A | Scotland | [39] |
D-CODER | Field | 100 | NSI | NSI | N/A | N/A | Portugal | [40] |
SmartFert 1 TM | Field | 25 and 50 | NSI | NSI | N/A | N/A | New Zealand | [41] |
SmartFert 2TM | Field | 30 and 90 | NSI | SI | N/A | N/A | New Zealand | [41] |
Polymer coated urea | Field | 85, 170 and 250 | NSI | NSI | N/A | N/A | Australia | [43] |
Polymer coated urea | Field | 50 | NSI | NSI | N/A | N/A | Australia | [42] |
Polymer coated urea | Field | 100 | N/A | N/A | N/A | SI | United Kingdom | [44] |
Epoxy-lignite coated urea | Lysimeter | 50 | NSI | NSI | NSI | NSI | New Zealand | [27] |
Polyester-lignite coated urea | Lysimeter | 50 | NSI | NSI | NSI | NSI | New Zealand | [27] |
Epoxy-lignite coated urea | Lysimeter | 200 | NSI | NSI | SI | NSI | New Zealand | [10] |
Urea impregnated lignite | Lysimeter | 200 | NSI | NSI | SI | NSI | New Zealand | [10] |
Parameter | Median Nitrate Loss Control (%) | Median Ammonium Loss Control (%) | Median N2O Loss Control (%) | Median DM Yield Increment (%) | Median Herbage N Increment (%) | Median NUE Increment (%) |
---|---|---|---|---|---|---|
SRNF Type | ||||||
PC | 80 | - | - | −7 | −4.3 | 5 |
BC | 41 | - | - | 26 | 52.5 | 26 |
IC | −25 | - | - | −13 | −32.8 | −19 |
PCH | 34 | - | - | 5 | −9.6 | 10 |
Application Rate | ||||||
≤100 | 5 | - | - | −5 | 19.8 | −12 |
101−200 | 85 | - | - | −9 | −32.2 | −9 |
>200 | 33 | - | - | 17 | 16.2 | 17 |
Over All | 36 | 10 | 16 | −25 | 6.4 | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abhiram, G. Slow-Release Fertilisers Control N Losses but Negatively Impact on Agronomic Performances of Pasture: Evidence from a Meta-Analysis. Nitrogen 2024, 5, 1058-1073. https://doi.org/10.3390/nitrogen5040068
Abhiram G. Slow-Release Fertilisers Control N Losses but Negatively Impact on Agronomic Performances of Pasture: Evidence from a Meta-Analysis. Nitrogen. 2024; 5(4):1058-1073. https://doi.org/10.3390/nitrogen5040068
Chicago/Turabian StyleAbhiram, Gunaratnam. 2024. "Slow-Release Fertilisers Control N Losses but Negatively Impact on Agronomic Performances of Pasture: Evidence from a Meta-Analysis" Nitrogen 5, no. 4: 1058-1073. https://doi.org/10.3390/nitrogen5040068
APA StyleAbhiram, G. (2024). Slow-Release Fertilisers Control N Losses but Negatively Impact on Agronomic Performances of Pasture: Evidence from a Meta-Analysis. Nitrogen, 5(4), 1058-1073. https://doi.org/10.3390/nitrogen5040068