Effect of a Slow-Release Urea Nanofertilizer on Soil Microflora and Yield of Direct Seeded Rice (Oryza sativa L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Column Study
2.1.1. Soil Column Design
2.1.2. N-Fertilizer Application
2.1.3. Parameters Studied in Soil Column Experiment
2.2. Field Study
2.2.1. Vegetative Growth and Photosynthetic Parameters
2.2.2. Grain Yield Parameters and Straw Yield
2.2.3. Plant Nutrient Parameters
2.2.4. Soil Nutrient and Microbiological Parameters
2.3. Statistical Analysis
3. Results
3.1. Soil Column Study
- Estimation of N-Content of the Leachate
3.1.1. Ammonical and Nitrate N Content of the Leachate Samples
3.1.2. Soil Enzyme Activities
Soil Dehydrogenase Activity
Soil Urease Activity
Soil Protease Activity
3.1.3. Culturable Soil Microbial Viable Cell Counts
3.2. Field Studies
3.2.1. Vegetative Parameters
Photosynthetic Parameters
3.2.2. Yield Parameters
3.2.3. Plant Nutrient Parameters
3.2.4. Grain Macro-Nutrient Content
3.2.5. Soil Microbial Count
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garnaik, S.; Samant, P.K.; Mandal, M.; Mohanty, T.R.; Dwibedi, S.K.; Patra, R.K.; Mohapatra, K.K.; Wanjari, R.H.; Sethi, D.; Sena, D.R.; et al. Untangling the Effect of Soil Quality on Rice Productivity under a 16-Years Long-Term Fertilizer Experiment Using Conditional Random Forest. Comput. Electron. Agric. 2022, 197, 106965. [Google Scholar] [CrossRef]
- Zayed, O.; Hewedy, O.A.; Abdelmoteleb, A.; Ali, M.; Youssef, M.S.; Roumia, A.F.; Seymour, D.; Yuan, Z.-C. Nitrogen Journey in Plants: From Uptake to Metabolism, Stress Response, and Microbe Interaction. Biomolecules 2023, 13, 1443. [Google Scholar] [CrossRef]
- Gu, J.; Yang, J. Nitrogen (N) Transformation in Paddy Rice Field: Its Effect on N Uptake and Relation to Improved N Management. Crop Environ. 2022, 1, 7–14. [Google Scholar] [CrossRef]
- Yousaf, A.; Khalid, N.; Aqeel, M.; Noman, A.; Naeem, N.; Sarfraz, W.; Ejaz, U.; Qaiser, Z.; Khalid, A. Nitrogen Dynamics in Wetland Systems and Its Impact on Biodiversity. Nitrogen 2021, 2, 196–217. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, H.; Yan, B.; Chen, L.; Shutes, B.; Wang, M.; Lyu, J.; Zhang, F. Ammonia Volatilization, Greenhouse Gas Emissions and Microbiological Mechanisms Following the Application of Nitrogen Fertilizers in a Saline-Alkali Paddy Ecosystem. Geoderma 2023, 433, 116460. [Google Scholar] [CrossRef]
- Tian, C.; Zhou, X.; Ding, Z.; Liu, Q.; Xie, G.; Peng, J.; Rong, X.; Zhang, Y.; Yang, Y.; Eissa, M.A. Controlled-Release N Fertilizer to Mitigate Ammonia Volatilization from Double-Cropping Rice. Nutr. Cycl. Agroecosyst. 2021, 119, 123–137. [Google Scholar] [CrossRef]
- Akter, A.; Islam, M.R.; Islam, M.R.; Islam, M.A.; Hasan, S.L.; Uddin, S.; Rahman, M.M. Methods of Urea Fertilizer Application Influence Growth, Yield, and Nitrogen Use Efficiency of Transplanted Aman Rice. Water 2022, 14, 3539. [Google Scholar] [CrossRef]
- Eldridge, S.M.; Pandey, A.; Weatherley, A.; Willett, I.R.; Myint, A.K.; Oo, A.N.; Ngwe, K.; Mang, Z.T.; Singh, U.; Chen, D. Recovery of Nitrogen Fertilizer Can Be Doubled by Urea-Briquette Deep Placement in Rice Paddies. Eur. J. Agron. 2022, 140, 126605. [Google Scholar] [CrossRef]
- Cowan, N.; Levy, P.; Moring, A.; Simmons, I.; Bache, C.; Stephens, A.; Marinheiro, J.; Brichet, J.; Song, L.; Pickard, A.; et al. Nitrogen Use Efficiency and N2O and NH3 Losses Attributed to Three Fertiliser Types Applied to an Intensively Managed Silage Crop. Biogeosciences 2019, 16, 4731–4745. [Google Scholar] [CrossRef]
- Yadav, M.R.; Kumar, S.; Lal, M.K.; Kumar, D.; Kumar, R.; Yadav, R.K.; Kumar, S.; Nanda, G.; Singh, J.; Udawat, P.; et al. Mechanistic Understanding of Leakage and Consequences and Recent Technological Advances in Improving Nitrogen Use Efficiency in Cereals. Agronomy 2023, 13, 527. [Google Scholar] [CrossRef]
- Harty, M.A.; McDonnell, K.P.; Whetton, R.; Gillespie, G.; Burke, J.I. Comparison of Ammonia-N Volatilization Losses from Untreated Granular Urea and Granular Urea Treated with NutriSphere-N®. Soil Use Manag. 2024, 40, e12891. [Google Scholar] [CrossRef]
- Swify, S.; Mažeika, R.; Baltrusaitis, J.; Drapanauskaitė, D.; Barčauskaitė, K. Modified Urea Fertilizers and Their Effects on Improving Nitrogen Use Efficiency (NUE). Sustainability 2023, 16, 188. [Google Scholar] [CrossRef]
- Kalia, A.; Sharma, S.P.; Kaur, H.; Kaur, H. Novel Nanocomposite-Based Controlled-Release Fertilizer and Pesticide Formulations: Prospects and Challenges. In Multifunctional Hybrid Nanomaterials for Sustainable Agri-Food and Ecosystem; Abd-Elsalam, K.A., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 99–134. [Google Scholar]
- Yadav, A.; Yadav, K.; Abd-Elsalam, K. Nanofertilizers: Types, Delivery and Advantages in Agricultural Sustainability. Agrochemicals 2023, 2, 296–336. [Google Scholar] [CrossRef]
- Kondal, R.; Kalia, A.; Krejcar, O.; Kuca, K.; Sharma, S.P.; Luthra, K.; Dheri, G.S.; Vikal, Y.; Taggar, M.S.; Abd-Elsalam, K.A.; et al. Chitosan-Urea Nanocomposite for Improved Fertilizer Applications: The Effect on the Soil Enzymatic Activities and Microflora Dynamics in N Cycle of Potatoes (Solanum tuberosum L.). Polymers 2021, 13, 2887. [Google Scholar] [CrossRef]
- Kalia, A.; Kaur, H. Nanofertilizers: An Innovation towards New Generation Fertilizers for Improved Nutrient Use Efficacy (NUE) and Environmental Sustainability. In Emerging Trends in NanoBioMedicine; Bhoop, B., Katare, O., Souto, E., Eds.; Taylor & Francis; CRC Press: Boca Raton, FL, USA, 2019; pp. 45–61. [Google Scholar]
- Kaur, S.; Kalia, A.; Sharma, S.P. Fabrication and Characterization of Nano-Hydroxyapatite Particles and Assessment of the Effect of Their Supplementation on Growth of Bacterial Root Endosymbionts of Cowpea. Inorg. Nano-Metal Chem. 2022, 52, 1–11. [Google Scholar] [CrossRef]
- Kalia, A.; Kaur, H. Agri-Applications of Nano-Scale Micronutrients: Prospects for Plant Growth Promotion; Raliya, R., Ed.; CRC Press; Taylor & Francis Group: Boca Raton, FL, USA, 2019. [Google Scholar]
- El-Saadony, M.T.; ALmoshadak, A.S.; Shafi, M.E.; Albaqami, N.M.; Saad, A.M.; El-Tahan, A.M.; Desoky, E.-S.M.; Elnahal, A.S.M.; Almakas, A.; Abd El-Mageed, T.A.; et al. Vital Roles of Sustainable Nano-Fertilizers in Improving Plant Quality and Quantity-an Updated Review. Saudi J. Biol. Sci. 2021, 28, 7349–7359. [Google Scholar] [CrossRef]
- Kottegoda, N.; Sandaruwan, C.; Priyadarshana, G.; Siriwardhana, A.; Rathnayake, U.A.; Berugoda Arachchige, D.M.; Kumarasinghe, A.R.; Dahanayake, D.; Karunaratne, V.; Amaratunga, G.A.J. Urea-Hydroxyapatite Nanohybrids for Slow Release of Nitrogen. ACS Nano 2017, 11, 1214–1221. [Google Scholar] [CrossRef]
- Easwaran, C.; Christopher, S.R.; Moorthy, G.; Mohan, P.; Marimuthu, R.; Koothan, V.; Nallusamy, S. Nano Hybrid Fertilizers: A Review on the State of the Art in Sustainable Agriculture. Sci. Total Environ. 2024, 929, 172533. [Google Scholar] [CrossRef] [PubMed]
- Mgadi, K.; Ndaba, B.; Roopnarain, A.; Rama, H.; Adeleke, R. Nanoparticle Applications in Agriculture: Overview and Response of Plant-Associated Microorganisms. Front. Microbiol. 2024, 15, 1354440. [Google Scholar] [CrossRef]
- Durgam, M.; Mailapalli, D.R. Transport of Nano-Plant Nutrients in Lateritic Soils. In Climate Impacts on Water Resources in India; Pandey, A., Ed.; Springer Nature: Cham, Switzerland, 2021; pp. 97–107. [Google Scholar]
- Tzollas, N.M.; Zachariadis, G.A.; Anthemidis, A.N.; Stratis, J.A. A New Approach to Indophenol Blue Method for Determination of Ammonium in Geothermal Waters with High Mineral Content. Int. J. Environ. Anal. Chem. 2010, 90, 115–126. [Google Scholar] [CrossRef]
- Edwards, A.C.; Hooda, P.S.; Cook, Y. Determination of Nitrate in Water Containing Dissolved Organic Carbon by Ultraviolet Spectroscopy. Int. J. Environ. Anal. Chem. 2001, 80, 49–59. [Google Scholar] [CrossRef]
- Kaur, H.; Kalia, A.; Sandhu, J.S.; Dheri, G.S.; Kaur, G.; Pathania, S. Interaction of TiO2 Nanoparticles with Soil: Effect on Microbiological and Chemical Traits. Chemosphere 2022, 301, 134629. [Google Scholar] [CrossRef] [PubMed]
- Bremner, J.M.; Douglas, L.A. Inhibition of Urease Activity in Soils. Soil Biol. Biochem. 1971, 3, 29–307. [Google Scholar] [CrossRef]
- Ladd, J.N. Properties of Proteolytic Enzymes Extracted from Soil. Soil Biol. Biochem. 1972, 4, 227–237. [Google Scholar] [CrossRef]
- Casida, L.E.; Klein, D.A.; Santoro, T. Soil Dehydrogenase Activity. Soil Sci. 1964, 98, 371–376. [Google Scholar] [CrossRef]
- Anderson, J.M.; Boardman, N. Studies on The Greening of Dark-Grown Bean Plants II. Development of Photochemical Activity. Aust. J. Biol. Sci. 1964, 17, 93. [Google Scholar] [CrossRef]
- Hulkko, L.S.S.; Chaturvedi, T.; Thomsen, M.H. Extraction and Quantification of Chlorophylls, Carotenoids, Phenolic Compounds, and Vitamins from Halophyte Biomasses. Appl. Sci. 2022, 12, 840. [Google Scholar] [CrossRef]
- Taghavi, T.; Patel, H.; Akande, O.E.; Galam, D.C.A. Total Anthocyanin Content of Strawberry and the Profile Changes by Extraction Methods and Sample Processing. Foods 2022, 11, 1072. [Google Scholar] [CrossRef]
- Kjeldahl, J. A New Method for the Determination of Nitrogen in Organic Matter. Fresenius’ Z. Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Amin, M.; Flowers, T.H. Evaluation of Kjeldahl Digestion. J. Res. Sci. 2014, 15, 159–179. [Google Scholar]
- Subbiah, B.V.; Asija, G.L. A Rapid Procedure for the Determination of Available Nitrogen in Soils. Curr. Sci. 1956, 25, 259–260. [Google Scholar]
- Olsen, S.; Cole, C.; Watanabe, F.; Dean, L. Estimation of Available Phosphorous by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Merwin, H.D.; Peech, M. Exchangeability of Soil Potassium in the Sand, Silt, and Clay Fractions as Influenced by the Nature of the Complementary Exchangeable Cation. Soil Sci. Soc. Am. J. 1951, 15, 125–128. [Google Scholar] [CrossRef]
- Majumdar, S.; Prakash, N.B. Prospects of Customized Fertilizers in Indian Agriculture. Curr. Sci. 2018, 115, 242–248. [Google Scholar] [CrossRef]
- Kalia, A.; Sharma, S.P.; Kaur, H. Nanoscale Fertilizers: Harnessing Boons for Enhanced Nutrient Use Efficiency and Crop Productivity; Abd-Elsalam, K.A., Prasad, R., Eds.; Nanotechnology in the Life Sciences; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-13295-8. [Google Scholar]
- Pradhan, S.; Durgam, M.; Mailapalli, D.R. Urea Loaded Hydroxyapatite Nanocarrier for Efficient Delivery of Plant Nutrients in Rice. Arch. Agron. Soil Sci. 2021, 67, 371–382. [Google Scholar] [CrossRef]
- Huang, R.; Mao, P.; Xiong, L.; Qin, G.; Zhou, J.; Zhang, J.; Li, Z.; Wu, J. Negatively Charged Nano-Hydroxyapatite Can Be Used as a Phosphorus Fertilizer to Increase the Efficacy of Wollastonite for Soil Cadmium Immobilization. J. Hazard. Mater. 2023, 443, 130291. [Google Scholar] [CrossRef] [PubMed]
- Benzon, H.R.L.; Rubenecia, M.R.U.; Ultra, V.U.; Lee, C. Nano-Fertilizer Affects the Growth, Development, and Chemical Properties of Rice. Int. J. Agron. Agric. Res. 2015, 7, 105–117. [Google Scholar]
- Subramanian, K.S.; Manikandan, A.; Thirunavukkarasu, M.; Rahale, C.S. Nano-Fertilizers for Balanced Crop Nutrition. In Nanotechnologies in Food and Agriculture; Springer International Publishing: Cham, Switzerland, 2015; pp. 69–80. ISBN 9783319140247. [Google Scholar]
- Mishra, D.; Chitara, M.K.; Upadhayay, V.K.; Singh, J.P.; Chaturvedi, P. Plant Growth Promoting Potential of Urea Doped Calcium Phosphate Nanoparticles in Finger Millet (Eleusine coracana (L.) Gaertn.) under Drought Stress. Front. Plant Sci. 2023, 14, 1137002. [Google Scholar] [CrossRef]
- Gaiotti, F.; Lucchetta, M.; Rodegher, G.; Lorenzoni, D.; Longo, E.; Boselli, E.; Cesco, S.; Belfiore, N.; Lovat, L.; Delgado-López, J.M.; et al. Urea-Doped Calcium Phosphate Nanoparticles as Sustainable Nitrogen Nanofertilizers for Viticulture: Implications on Yield and Quality of Pinot Gris Grapevines. Agronomy 2021, 11, 1026. [Google Scholar] [CrossRef]
- Kardes, T.A.; Gunes, A. Environmental and Innovative Fertilizer Development Strategies for Wheat Cultivation: Urea-Doped Hydroxyapatite, Biochar-Coated Diammonium Phosphate, and Biochar-Coated Urea in Basal and Top Dressing. J. Soil Sci. Plant Nutr. 2024, 24, 2064–2079. [Google Scholar] [CrossRef]
- Zhou, W.; Yan, F.; Chen, Y.; Ren, W. Optimized Nitrogen Application Increases Rice Yield by Improving the Quality of Tillers. Plant Prod. Sci. 2022, 25, 311–319. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, Y.; Zhang, X.; Zhou, Z.; Han, X.; Zhou, Y.; Qin, L.; Liu, K.; Li, S.; Wang, W.; et al. Increasing Basal Nitrogen Fertilizer Rate Improves Grain Yield, Quality and 2-Acetyl-1-Pyrroline in Rice under Wheat Straw Returning. Front. Plant Sci. 2023, 13, 1099751. [Google Scholar] [CrossRef] [PubMed]
- Dongling, J.; Wenhui, X.; Zhiwei, S.; Lijun, L.; Junfei, G.; Hao, Z.; Harrison, M.T.; Ke, L.; Zhiqin, W.; Weilu, W.; et al. Translocation and Distribution of Carbon-Nitrogen in Relation to Rice Yield and Grain Quality as Affected by High Temperature at Early Panicle Initiation Stage. Rice Sci. 2023, 30, 598–612. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, G.; Chen, Y.; Jiang, Y.; Shi, Y.; Zhao, L.; Liao, P.; Wang, W.; Xu, K.; Dai, Q.; et al. Excessive Nitrogen Application Leads to Lower Rice Yield and Grain Quality by Inhibiting the Grain Filling of Inferior Grains. Agriculture 2022, 12, 962. [Google Scholar] [CrossRef]
- Fernando, N.L.; Rathnayake, D.T.N.; Kottegoda, N.; Jayanetti, J.K.D.S.; Karunaratne, V.; Jayasundara, D.R. Mechanistic Insights into Interactions at Urea-Hydroxyapatite Nanoparticle Interface. Langmuir 2021, 37, 6691–6701. [Google Scholar] [CrossRef]
- Raguraj, S.; Wijayathunga, W.M.S.; Gunaratne, G.P.; Amali, R.K.A.; Priyadarshana, G.; Sandaruwan, C.; Karunaratne, V.; Hettiarachchi, L.S.K.; Kottegoda, N. Urea–Hydroxyapatite Nanohybrid as an Efficient Nutrient Source in Camellia sinensis (L.) Kuntze (Tea). J. Plant Nutr. 2020, 43, 2383–2394. [Google Scholar] [CrossRef]
- Kaysar, M.S.; Sarker, U.K.; Monira, S.; Hossain, M.A.; Somaddar, U.; Saha, G.; Hossain, S.S.F.; Mokarroma, N.; Chaki, A.K.; Bhuiya, M.S.U.; et al. Optimum Nitrogen Application Acclimatizes Root Morpho-Physiological Traits and Yield Potential in Rice under Subtropical Conditions. Life 2022, 12, 2051. [Google Scholar] [CrossRef]
- Cheng, F.; Bin, S.; Iqbal, A.; He, L.; Wei, S.; Zheng, H.; Yuan, P.; Liang, H.; Ali, I.; Xie, D.; et al. High Sink Capacity Improves Rice Grain Yield by Promoting Nitrogen and Dry Matter Accumulation. Agronomy 2022, 12, 1688. [Google Scholar] [CrossRef]
- Chen, Q.; Yuan, Y.; Hu, Y.; Wang, J.; Si, G.; Xu, R.; Zhou, J.; Xi, C.; Hu, A.; Zhang, G. Excessive Nitrogen Addition Accelerates N Assimilation and P Utilization by Enhancing Organic Carbon Decomposition in a Tibetan Alpine Steppe. Sci. Total Environ. 2021, 764, 142848. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Xu, X. Competition between Roots and Microorganisms for Nitrogen: Mechanisms and Ecological Relevance. New Phytol. 2013, 198, 656–669. [Google Scholar] [CrossRef]
Source | Ammonical-N Content (mg L−1) | Nitrate-N Content (mg L−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1st Day | Week 1 | Week 2 | Week 3 | Week 4 | 1st day | Week 1 | Week 2 | Week 3 | Week 4 | ||
N-fertilizer Source | |||||||||||
Conv-Urea | 7.095 a | 4.346 a | 1.636 a | 0.304 b | 0.300 b | 2.912 a | 3.240 a | 3.564 a | 3.532 a | 3.552 b | |
Nano-Urea | 5.806 b | 4.641 a | 1.834 a | 1.584 a | 1.348 a | 2.377 b | 3.123 b | 3.515 a | 3.547 a | 3.631 a | |
LSD (p ≤ 0.05) | 0.053 | 0.437 | 0.258 | 0.182 | 0.008 | 0.019 | 0.050 | 0.083 | 0.023 | 0.030 | |
Soil Type | |||||||||||
Low | 9.653 a | 7.985 a | 2.010 a | 0.780 a | 0.400 c | 2.811 a | 3.563 a | 3.826 a | 3.764 a | 3.686 a | |
Medium | 5.342 b | 3.305 b | 1.875 b | 0.554 b | 0.321 a | 2.626 ab | 3.0991 b | 3.650 b | 3.477 b | 3.597 a | |
Heavy | 4.355 c | 2.190 c | 1.320 c | 0.001 c | 0.251 b | 2.497 b | 2.882 c | 3.142 c | 3.377 c | 3.491 b | |
LSD (p ≤ 0.05) | 0.487 | 0.327 | 0.166 | 0.07 | 0.018 | 0.197 | 0.040 | 0.117 | 0.067 | 0.096 | |
N-fertilizer Level | |||||||||||
0 | 1.986 b | 1.251 b | 0.454 c | 0.368 b | 0.121 c | 1.123 c | 1.131 b | 0.494 b | 0.330 b | 0.269 b | |
50% | 7.124 a | 5.1527 a | 1.663 b | 0.387 b | 0.383 b | 2.321 b | 3.149 b | 3.544 ab | 3.528 b | 3.606 a | |
75% | 7.324 a | 5.276 a | 1.751 b | 0.499 a | 0.384 b | 2.752 a | 3.187 ab | 3.570 a | 3.531 b | 3.652 a | |
100% | 7.366 a | 5.295 a | 2.072 a | 0.522 a | 0.409 a | 2.776 a | 3.258 a | 3.570 a | 3.598 a | 3.838 a | |
LSD (p ≤ 0.05) | 0.381 | 0.239 | 0.166 | 0.05 | 0.011 | 0.204 | 0.072 | 0.083 | 0.053 | 0.069 | |
ANOVA analysis | D.f. | ||||||||||
Soil type | 2 | 190.493 *** | 226.943 *** | 3.218 *** | 3.883 *** | 0.134 *** | 0.600 ** | 2.91 *** | 3.024 *** | 0.969 *** | 0.229 *** |
N-fertilizer Source | 1 | 29.906 *** | 1.560 *** | 0.702 *** | 1.413 *** | 0.042 *** | 5.147 *** | 0.247 *** | 0.042 ns | 0.004 ns | 0.110 ** |
N-fertilizer Level | 3 | 48.770 *** | 40.315 *** | 1.189 *** | 0.109 *** | 0.333 *** | 0.446 ns | 0.057 ** | 0.037 ns | 0.031 ** | 0.126 *** |
Soil type × N-fertilizer source × N-fertilizer level | 6 | 3.998 *** | 7.186 *** | 0.133 ns | 0.089 *** | 0.002 *** | 0.343 ** | 0.112 *** | 0.014 ns | 0.005 ** | 0.031 ** |
Source | Dehydrogenase (µg TPF Formed g−1 Soil h−1) | Urease (µg Urea Hydrolyzed g−1 Soil h−1) | Protease (µmol Tyrosine Equiv. h−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
10th Day | 20th Day | 30th Day | 10th Day | 20th Day | 30th Day | 10th Day | 20th Day | 30th Day | ||
N-fertilizer Source | ||||||||||
Conv-urea | 0.416 b | 0.470 b | 0.514 b | 0.094 b | 0.096 b | 0.097 b | 24.864 b | 24.860 a | 24.664 b | |
Nano-urea | 0.448 a | 0.499 a | 0.564 a | 0.095 a | 0.097 a | 0.097 a | 25.342 a | 24.870 a | 25.313 a | |
LSD (p ≤ 0.05) | 0.007 | 0.012 | 0.011 | 0.0001 | 0.0001 | 0.0001 | 0.3560 | 0.326 | 0.209 | |
Soil Texture | ||||||||||
Light | 0.713 a | 0.808 a | 0.836 a | 0.963 a | 0.097 a | 0.098 a | 25.6706 a | 24.9846 a | 25.0651 a | |
Medium | 0.318 b | 0.3442 b | 0.392 b | 0.959 a | 0.097 b | 0.097 a | 25.0526 b | 24.8972 a | 25.0223 a | |
Heavy | 0.266 c | 0.302 c | 0.390 b | 0.930 b | 0.096 c | 0.097 a | 24.5867 b | 24.7143 a | 24.8799 a | |
LSD (p ≤ 0.05) | 0.014 | 0.018 | 0.020 | 0.0005 | 0.0001 | 0.001 | 0.598 | 0.694 | 0.649 | |
N-fertilizer Level (% RDF) | ||||||||||
0 | 0.223 c | 0.233 c | 0.237 c | 0.093 c | 0.095 c | 0.096 c | 14.350 c | 14.142 d | 14.029 d | |
50 | 0.495 b | 0.546 b | 0.600 b | 0.093 c | 0.095 c | 0.096 c | 28.452 b | 27.637 c | 27.794 c | |
75 | 0.505 ab | 0.577 a | 0.660 a | 0.094 b | 0.096 b | 0.096 b | 28.537 ab | 28.173 b | 28.659 b | |
100 | 0.506 a | 0.583 a | 0.660 a | 0.099 a | 0.0997 a | 0.101 a | 29.074 a | 29.510 a | 29.474 a | |
LSD (p ≤ 0.05) | 0.011 | 0.011 | 0.011 | 0.0004 | 0.0003 | 0.0004 | 0.554 | 0.415 | 0.416 | |
ANOVA | D.f. | |||||||||
Soil type | 2 | 1.431 *** | 1.895 *** | 1.587 *** | 0.000 *** | 0.000 *** | 0.000 *** | 7.095 ** | 0.4567 ns | 0.226 ns |
N-fertilizer Source | 1 | 0.01897 *** | 0.016 *** | 0.0448 *** | 0.000 *** | 0.000 ns | 0.000 ns | 4.106 ** | 0.002 ns | 7.5810 *** |
N-fertilizer Level | 3 | 0.350 *** | 0.512 *** | 0.745 *** | 0.000 *** | 0.000 *** | 0.000 *** | 926.391 *** | 931.124 *** | 969.480 *** |
Soil type× N-fertilizer source×N-fertilizer level | 6 | 0.0189 *** | 0.032 *** | 0.006 *** | 0.000 *** | 0.000 ns | 0.000 ** | 0.734 ns | 2.056 *** | 0.655 ns |
Source | Aerobic Bacteria | Fungus | Non-Symbiotic Nitrogen Fixers | |||||||
---|---|---|---|---|---|---|---|---|---|---|
10th Day | 20th Day | 30th Day | 10th Day | 20th Day | 30th Day | 10th Day | 20th Day | 30th Day | ||
N-fertilizer Source | ||||||||||
Conv-urea | 6.755 a | 6.634 a | 6.624 a | 4.218 a | 4.076 a | 3.952 a | 4.521 b | 4.541 a | 4.504 a | |
Nano-urea | 6.720 b | 6.664 a | 6.616 a | 4.189 a | 4.083 a | 3.926 a | 4.585 a | 4.557 a | 4.517 a | |
LSD (p ≤ 0.05) | 0.017 | 0.041 | 0.030 | 0.043 | 0.120 | 0.098 | 0.035 | 0.038 | 0.035 | |
Soil Type | ||||||||||
Low | 6.763 a | 6.659 a | 6.656 a | 4.253 a | 4.183 a | 4.001 a | 4.653 a | 4.627 a | 4.568 a | |
Medium | 6.745 a | 6.656 a | 6.619 b | 4.239 a | 4.091 a | 3.977 a | 4.517 b | 4.51 b | 4.503 b | |
Heavy | 6.704 b | 6.633 a | 6.584 c | 4.118 b | 3.964 b | 3.838 a | 4.488 b | 4.507 b | 4.461 b | |
LSD (p ≤ 0.05) | 0.038 | 0.077 | 0.029 | 0.099 | 0.118 | 0.168 | 0.039 | 0.020 | 0.054 | |
N-fertilizer level | ||||||||||
0 | 6.683 b | 6.614 b | 6.590 c | 4.169 a | 3.980 c | 3.872 b | 4.456 b | 4.405 b | 4.422 b | |
50% | 6.716 b | 6.649 ab | 6.602 cb | 4.182 a | 4.036 cb | 3.937 ab | 4.565 a | 4.587 a | 4.521 a | |
75% | 6.769 a | 6.656 a | 6.635 ab | 4.208 a | 4.133 ab | 3.957 ab | 4.592 a | 0.460 a | 4.542 a | |
100% | 6.781 a | 6.678 a | 6.652 a | 4.256 a | 4.169 a | 3.990 a | 4.597 a | 4.602 a | 4.557 a | |
LSD (p ≤ 0.05) | 0.039 | 0.041 | 0.034 | 0.093 | 0.106 | 0.112 | 0.052 | 0.049 | 0.051 | |
ANOVA analysis | ||||||||||
Factor | D.f. | |||||||||
Soil type | 2 | 0.021 ** | 0.005 ns | 0.031 *** | 0.132 ** | 0.290 *** | 0.185 ** | 0.186 *** | 0.111 *** | 0.070 *** |
N-fertilizer Source | 1 | 0.022 ** | 0.016 * | 0.001 * | 0.016 ns | 0.00 ns | 0.011 ns | 0.073 *** | 0.005 ns | 0.003 ns |
N-fertilizer Level | 3 | 0.037 *** | 0.013 * | 0.015 ** | 0.026 ns | 0.136 ** | 0.045 ns | 0.078 *** | 0.165 *** | 0.066 *** |
Soil type× N-fertilizer source×N-fertilizer level | 6 | 0.008 * | 0.009 * | 0.002 ns | 0.071 ns | 0.051 ns | 0.015 ns | 0.010 ns | 0.006 ns | 0.004 ns |
Source | Plant Height (cm) | Root | Shoot | Total Chlorophyll content (mg g−1 Fresh Leaf Tissue) | Total Carotenoids (mg g−1 Fresh Leaf Tissue) | Total Anthocyanins (mg g−1 Fresh Leaf Tissue) | |||
---|---|---|---|---|---|---|---|---|---|
Fresh Weight (g Plant−1) | Dry Weight (g Plant−1) | Fresh Weight (g Plant−1) | Dry Weight (g Plant−1) | ||||||
Treatment | |||||||||
T1 (100% RDF CU) | 67.800 a | 5.006 ab | 1.283 ab | 13.754 a | 5.446 a | 14.087 a | 270.22 a | 0.245 ab | |
T2 (100%RDF NU) | 68.989 a | 5.293 a | 1.141 ab | 14.089 a | 5.505 a | 15.879 a | 273.53 a | 0.256 a | |
T3 (75%RDF CU) | 67.248 a | 3.962 cdb | 2.574 a | 11.492 a | 4.761 a | 13.174 ab | 257.76 a | 0.212 ab | |
T4 (75% RDF NU) | 67.456 a | 4.620 cab | 1.121 ab | 12.910 a | 4.763 a | 13.161 ab | 259.72 a | 0.215 ab | |
T5 (50% RDF CU) | 66.226 a | 3.616 cd | 0.988 b | 10.550 a | 4.223 a | 10.639 cb | 244.13 ab | 0.201 ab | |
T6 (50% RDF NU) | 66.256 a | 3.885 cdb | 0.941 b | 11.647 a | 4.614 a | 13.049 ab | 245.93 ab | 0.205 ab | |
T7 (Control) | 61.756 b | 3.217 d | 1.564 ab | 10.419 a | 3.877 a | 8.573 c | 190.96 b | 0.194 b | |
LSD (p ≤ 0.05) | 3.4048 | 1.283 | 1.531 | 4.707 | 1.900 | 3.318 | 55.995 | 0.0587 | |
DAS | |||||||||
30 | 46.129 c | 2.350 c | 0.592 b | 5.255 b | 1.476 b | 17.073 a | 359.60 a | 0.199 b | |
60 | 69.184 b | 3.926 b | 1.259 b | 14.641 a | 6.086 a | 14.520 b | 271.58 b | 0.342 a | |
90 | 84.286 a | 6.410 a | 2.268 a | 16.473 a | 6.662 a | 6.361 c | 115.49 c | 0.114 c | |
LSD (p ≤ 0.05) | 2.372 | 1.087 | 0.767 | 2.993 | 1.361 | 1.580 | 34.561 | 0.036 | |
ANOVA analysis | |||||||||
Source | D.f | ||||||||
Treatment | 6 | 47.991 ** | 19.723 ns | 3.168 ns | 5.215 ns | 2.909 ns | 50.773 *** | 6967.372 ns | 0.005 ns |
DAS | 2 | 7754.526 *** | 760.600 *** | 169.682 *** | 87.966 *** | 14.948 *** | 657.330 *** | 320,954.751 *** | 0.280 *** |
Trt×DAS | 12 | 13.301 ns | 23.580 ns | 4.993 ns | 2.614 ns | 2.915 ns | 7.374 ns | 1384.680 ns | 0.007 ns |
Source | Tiller Length (cm Per m−2) | Day at 50%FLOWERING | Panicle Weight (g per Plant) | No. of Filled Grain Per Panicle | No. of Unfilled Grains Per Panicle | Weight-Filled Grains Per Panicle (g) | Grain Yield (q ha−1) | Straw Yield (q ha−1) |
---|---|---|---|---|---|---|---|---|
T1 (100% RDF CU) | 337.50 a | 81.66 b | 2.58 a | 126.9 ab | 18.06 cb | 2.49 ab | 68.53 a | 87.67 a |
T2 (100%RDF NU) | 360.83 a | 81.33 b | 2.90 a | 141.2 a | 15.00 c | 2.80 a | 70.47 a | 88.00 a |
T3 (75%RDF CU) | 326.66 a | 81.66 b | 2.47 a | 104.5 b | 16.86 c | 2.33 b | 67.07 a | 85.27 a |
T4 (75% RDF NU) | 353.33 a | 81.00 b | 2.57 a | 130.5 ab | 15.60 c | 2.36 ab | 68.52 a | 87.33 a |
T5 (50% RDF CU) | 326.66 a | 81.33 b | 2.15 a | 111.1 ab | 24.86 ab | 1.91 ab | 62.53 a | 85.66 a |
T6 (50% RDF NU) | 335.83 a | 81.33 b | 2.21 a | 115.0 ab | 21.06 cab | 2.13 ab | 65.20 a | 85.67 a |
T7 (Control) | 302.50 b | 83.66 a | 1.87 a | 90.6 b | 28.13 a | 1.71 b | 49.87 b | 68.93 b |
LSD (p ≤ 0.05) | 62.45 | 5.452 | 0.87 | 32.0 | 7.97 | 0.798 | 9.33 | 5.61 |
Source | Total Aerobic Bacteria | Fungi | Phosphate Solubilizing Bacteria | Non-Symbiotic N Fixers | Symbiotic N Fixers | Actinobacteria | Ammonia Oxidizers | Nitrate Reducing Bacteria | |
---|---|---|---|---|---|---|---|---|---|
Treatment | |||||||||
T1 (100% RDF CU) | 6.761 a | 4.033 a | 4.583 ab | 4.516 a | 4.466 b | 4.554 a | 4.440 cb | 4.709 ab | |
T2 (100%RDF NU) | 6.802 a | 4.161 a | 4.681 a | 4.562 a | 4.588 a | 4.683 a | 4.569 a | 4.739 a | |
T3 (75%RDF CU) | 6.726 a | 4.099 a | 4.552 ab | 4.486 a | 4.496 ab | 4.657 a | 4.454 cab | 4.641 cab | |
T4 (75% RDF NU) | 6.898 a | 4.100 a | 4.660 ab | 4.541 a | 4.588 a | 4.670 a | 4.447 cab | 4.652 cab | |
T5 (50% RDF CU) | 6.727 a | 4.059 a | 4.505 ab | 4.492 a | 4.515 ab | 4.519 a | 4.306 c | 4.618 cb | |
T6 (50% RDF NU) | 6.740 a | 4.059 a | 4.589 ab | 4.520 a | 4.541 ab | 4.651 a | 4.372 cb | 4.637 cab | |
T7 (Control) | 6.633 a | 3.998 a | 4.470 b | 4.524 a | 4.518 ab | 4.495 a | 4.460 ab | 4.540 c | |
LSD (p ≤ 0.05) | 0.228 | 0.262 | 0.200 | 0.178 | 0.121 | 0.236 | 0.149 | 0.115 | |
DAS | |||||||||
30 | 6.729 a | 4.22 a | 4.577 ab | 4.504 a | 4.632 a | 4.687 a | 4.406 b | 4.710 a | |
60 | 6.727 a | 4.126 a | 4.511 b | 4.557 a | 4.467 b | 4.698 a | 4.317 b | 4.537 b | |
90 | 6.763 a | 3.866 b | 4.639 a | 4.499 a | 4.454 b | 4.427 b | 4.583 a | 4.697 a | |
LSD (p ≤ 0.05) | 0.115 | 00.117 | 0.124 | 0.138 | 0.104 | 0.123 | 0.106 | 0.113 | |
ANOVA analysis | |||||||||
Source | D.F. | ||||||||
Treatment | 6 | 0.027 ns | 0.025 ns | 0.053 ns | 0.006 ns | 0.013 ns | 0.056 ns | 0.059 ns | 0.037 ns |
DAS | 2 | 0.008 ns | 0.723 *** | 0.086 ns | 0.022 ns | 0.205 ** | 0.497 *** | 0.384 *** | 0.195 ** |
Trt × DAS | 12 | 0.045 ns | 0.070 ns | 0.036 ns | 0.037 ns | 0.026 ns | 0.066 ns | 0.027 ns | 0.033 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sehgal, Y.; Kalia, A.; Dhillon, B.S.; Dheri, G.S. Effect of a Slow-Release Urea Nanofertilizer on Soil Microflora and Yield of Direct Seeded Rice (Oryza sativa L.). Nitrogen 2024, 5, 1074-1091. https://doi.org/10.3390/nitrogen5040069
Sehgal Y, Kalia A, Dhillon BS, Dheri GS. Effect of a Slow-Release Urea Nanofertilizer on Soil Microflora and Yield of Direct Seeded Rice (Oryza sativa L.). Nitrogen. 2024; 5(4):1074-1091. https://doi.org/10.3390/nitrogen5040069
Chicago/Turabian StyleSehgal, Yashika, Anu Kalia, Buta Singh Dhillon, and Gurmeet Singh Dheri. 2024. "Effect of a Slow-Release Urea Nanofertilizer on Soil Microflora and Yield of Direct Seeded Rice (Oryza sativa L.)" Nitrogen 5, no. 4: 1074-1091. https://doi.org/10.3390/nitrogen5040069
APA StyleSehgal, Y., Kalia, A., Dhillon, B. S., & Dheri, G. S. (2024). Effect of a Slow-Release Urea Nanofertilizer on Soil Microflora and Yield of Direct Seeded Rice (Oryza sativa L.). Nitrogen, 5(4), 1074-1091. https://doi.org/10.3390/nitrogen5040069