Network Data Unsupervised Clustering to Anomaly Detection †
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Funding
Conflicts of Interest
References
- Statista. IHS. Internet of Things (Iot) Connected Devices Installed Base Worldwide from 2015 to 2025 (in Billions) 2018. Available online: https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/ (accessed on 17 September 2018).
- Umer, M.F.; Sher, M.; Bi, Y. Flow-based intrusion detection: Techniques and challenges. Comput. Secur. 2017, 70, 238–254. [Google Scholar] [CrossRef]
- Buczak, A.; Guven, E. A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 2016, 18, 1153–1176. [Google Scholar] [CrossRef]
- Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69. [Google Scholar] [CrossRef]
- Ibrahim, L.M.; Basheer, D.T.; Mahmod, M.S. A comparison study for intrusion database (KDD99, NSL-KDD) based on self organization map (SOM) artificial neural network. J. Eng. Sci. Technol. 2013, 8, 107–119. [Google Scholar]
- Ramadas, M.; Ostermann, S.; Tjaden, B. Detecting Anomalous Network Traffic with Self-organizing Maps. In Recent Advances in Intrusion Detection; Vigna, G., Kruegel, C., Jonsson, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 36–54. [Google Scholar]
- Xu, K.; Zhang, Z.L.; Bhattacharyya, S. Internet Traffic Behavior Profiling for Network Security Monitoring. IEEE ACM Trans. Netw. 2008, 16, 1241–1252. [Google Scholar] [CrossRef]
- Fadlullah, Z.M.; Taleb, T.; Vasilakos, A.V.; Guizani, M.; Kato, N. DTRAB: Combating Against Attacks on Encrypted Protocols Through Traffic-Feature Analysis. IEEE ACM Trans. Netw. 2010, 18, 1234–1247. [Google Scholar] [CrossRef]
- Lee, K.; Kim, J.; Kwon, K.H.; Han, Y.; Kim, S. DDoS attack detection method using cluster analysis. Expert Syst. Appl. 2008, 34, 1659–1665. [Google Scholar] [CrossRef]
- Hofstede, R.; Jonker, M.; Sperotto, A.; Pras, A. Flow-Based Web Application Brute-Force Attack and Compromise Detection. J. Netw. Syst. Manag. 2017, 25, 735–758. [Google Scholar] [CrossRef]
- Del Coso, C.; Fustes, D.; Dafonte, C.; Nóvoa, F.J.; Rodríguez-Pedreira, J.M.; Arcay, B. Mixing numerical and categorical data in a Self-Organizing Map by means of frequency neurons. Appl. Soft Comput. 2015, 36, 246–254. [Google Scholar] [CrossRef]
- Shiravi, A.; Shiravi, H.; Tavallaee, M.; Ghorbani, A.A. Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Comput. Secur. 2012, 31, 357–374. [Google Scholar] [CrossRef]
Flows | Logs | ||||||
---|---|---|---|---|---|---|---|
10 × 10 | 20 × 20 | 30 × 30 | 10 × 10 | 20 × 20 | 30 × 30 | ||
Sensitivity | 90.33% | 94.09% | 94.28% | 87.78% | 90.20% | 94.66% | |
Specificity | 98.36% | 99.00% | 99.26% | 96.37% | 99.24% | 99.12% | |
Precision | 67.06% | 77.80% | 82.44% | 86.56% | 96.95% | 96.62% | |
Accuracy | 98.07% | 98.83% | 99.08% | 94.56% | 97.34% | 98.18% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Vizcaíno, M.; Dafonte, C.; Nóvoa, F.J.; Garabato, D.; Álvarez, M.A. Network Data Unsupervised Clustering to Anomaly Detection. Proceedings 2018, 2, 1173. https://doi.org/10.3390/proceedings2181173
López-Vizcaíno M, Dafonte C, Nóvoa FJ, Garabato D, Álvarez MA. Network Data Unsupervised Clustering to Anomaly Detection. Proceedings. 2018; 2(18):1173. https://doi.org/10.3390/proceedings2181173
Chicago/Turabian StyleLópez-Vizcaíno, Manuel, Carlos Dafonte, Francisco J. Nóvoa, Daniel Garabato, and M. A. Álvarez. 2018. "Network Data Unsupervised Clustering to Anomaly Detection" Proceedings 2, no. 18: 1173. https://doi.org/10.3390/proceedings2181173
APA StyleLópez-Vizcaíno, M., Dafonte, C., Nóvoa, F. J., Garabato, D., & Álvarez, M. A. (2018). Network Data Unsupervised Clustering to Anomaly Detection. Proceedings, 2(18), 1173. https://doi.org/10.3390/proceedings2181173