Opera.DL: Deep Learning Modelling for Photovoltaic System Monitoring †
Abstract
:1. Introduction
1.1. Related Works
2. Methodology
2.1. Photovoltaic System: Structure, Behaviour and Monitoring
2.2. Deep Learning Modeling to Forecast the Output Power
- 2LSTM. Two layers of LSTM which were previously identified as a suitable configuration for forecasting energy load [29].
- 3CNN + 2LSTM. Three layers of CNN are firstly integrated as spatial feature extractors. Next, two layers of LSTM model the temporal dependencies from CNN. The combination of CNN-LSTM Hybrid Networks was selected to provide encouraging results in power consumption [30].
3. Evaluation
3.1. Experimental Setup
3.2. Results
- Araujo model. It is a good standard for forecasting output power in photovoltaic system, which is based on analytical modeling.
- 2LSTM model. Two layers of LSTMs (described in Section 2.2).
- 3CNN + 2LSTM model. Three layers of CNNs to extract features together with two layers of LSTMs (described in Section 2.2) are evaluated.
3.3. Discussion
4. Conclusions and Ongoing Works
Author Contributions
Funding
Conflicts of Interest
Abbreviations
FF | Fill Factor |
IoT | Internet of Things |
LD | linear dichroism |
CNN | Convolutional Neural Network |
LSTM | Long Short-Term Memory |
DL | Deep Learning |
O&M | Operation and Maintenance |
PV | Photovoltaic |
PVS | Systems (PVS) |
References
- Renewables Information 2017: with 2016 Data; International Energy Agency (IEA): Paris, France, 2017.
- O&M Best Practices Guidelines; Solar Power Europe: Brussels, 2016.
- Global Market Outlook for Solar Power, 2019–2023; Solar Power Europe: Brussels, 2019.
- Bermejo, J.F.; Fernández, J.F.G.; Polo, F.O.; Márquez, A.C. A review of the use of artificial neural network models for energy and reliability prediction. A study of the solar PV, hydraulic and wind energy sources. Appl. Sci. 2019, 9, 1844. [Google Scholar] [CrossRef]
- Luque, A.; Hegedus, S. Handbook of Photovoltaic Science and Engineering; Wiley: New Jersey, 2012. [Google Scholar]
- Rus-Casas, C.; Aguilar, J.D.; Rodrigo, P.; Almonacid, F.; Pérez-Higueras, P.J. Classification of methods for annual energy harvesting calculations of photovoltaic generators. Energy Convers. Manag. 2014, 78, 527–536. [Google Scholar] [CrossRef]
- Almeida, M.P.; Muñoz, M.; De La Parra, I.; Perpiñán, O. Comparative study of PV power forecast using parametric and nonparametric PV models. Sol. Energy 2017, 155, 854–866. [Google Scholar] [CrossRef]
- De La Parra, I.; Muñoz, M.; Lorenzo, E.; García, M.; Marcos, J.; Martínez-Moreno, F. PV performance modelling: A review in the light of quality assurance for large PV plants. Renew. Sustain. Energy Rev. 2017, 78, 780–797. [Google Scholar] [CrossRef]
- Fuentes, M.; Nofuentes, G.; Aguilera, J.; Talavera, D.L.; Castro, M. Application and validation of algebraic methods to predict the behaviour of crystalline silicon PV modules in Mediterranean climates. Sol. Energy 2007, 81, 1396–1408. [Google Scholar] [CrossRef]
- Araujo, G.L.; Sánchez, E. Analytical expressions for the determination of the maximum power point and the fill factor of a solar cell. Sol. Cells 1982, 5, 377–386. [Google Scholar] [CrossRef]
- Fuentes, M.; Vivar, M.; Burgos, J.M.; Aguilera, J.; Vacas, J.A. Design of an accurate, low-cost autonomous data logger for PV system monitoring using ArduinoTM that complies with IEC standards. Sol. Energy Mater. Sol. Cells 2014, 130, 529–543. [Google Scholar] [CrossRef]
- Daliento, S.; Chouder, A.; Guerriero, P.; Massi Pavan, A.; Mellit, A.; Moeini, R.; Tricoli, P. Monitoring, Diagnosis, and Power Forecasting for Photovoltaic Fields: A Review. Int. J. Photoenergy 2017, 2017, 1356851. [Google Scholar] [CrossRef]
- Raza, M.; Aslam, N.; Le-Minh, H.; Hussain, S.; Cao, Y.; Khan, N.M. A Critical Analysis of Research Potential, Challenges, and Future Directives in Industrial Wireless Sensor Networks. IEEE Commun. Surv. Tutor. 2018, 20, 39–95. [Google Scholar] [CrossRef]
- Almonacid-Olleros, G.; Vidal, P.G.; Fernández-Carrasco, J.I.; Almonacid, G. Opera Project: Analytic platform based on Big Data and Business Intelligence to improve Operation and Maintenance in PV generators. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering, Palermo, Italy, 12–15 June 2018. [Google Scholar]
- Available online: https://www.enelgreenpower.com/es/historias/a/2017/08/Big-Data-el-oro-digital-de-las-renovables (accesed on 18 June 2019).
- Available online: https://www.acciona.com/es/lineas-de-negocio/energia/proyectos-emblematicos/centro-control-energias-renovables/ (accesed on 18 June 2019).
- Gamboa, J.C.B. Deep learning for time-series analysis. arXiv 2017, arXiv:1701.01887. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. LSTM can solve hard long time lag problems. In Advances in Neural Information Processing Systems; MIT: Denver, CO, USA, 1997; pp. 473–479. [Google Scholar]
- Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep learning for sensor-based activity recognition: A survey. Pattern Recognit. Lett. 2019, 119, 3–11. [Google Scholar] [CrossRef]
- Medina-Quero, J.M.; Lopez-Medina, M.A.; Hidalgo, A.S.; Espinilla, M. Predicting the Urgency Demand of COPD Patients from Environmental Sensors within Smart Cities with High-Environmental Sensitivity. IEEE Access 2018, 6, 25081–25089. [Google Scholar] [CrossRef]
- Medina-Quero, J.; Zhang, S.; Nugent, C.; Espinilla, M. Ensemble classifier of long short-term memory with fuzzy temporal windows on binary sensors for activity recognition. Expert Syst. Appl. 2018, 114, 441–453. [Google Scholar] [CrossRef]
- Mocanu, E.; Nguyen, P.H.; Gibescu, M.; Kling, W.L. Deep learning for estimating building energy consumption. Sustain. Energy Grids Netw. 2016, 6, 91–99. [Google Scholar] [CrossRef]
- Qiu, Z.; Yao, T.; Mei, T. Learning spatio-temporal representation with pseudo-3d residual networks. In Proceedings of the IEEE International Conference on Computer Vision 2017, Venice, Italy, 22–29 October 2017; pp. 5533–5541. [Google Scholar]
- Abdel-Hamid, O.; Mohamed, A.-R.; Jiang, H.; Deng, L.; Penn, G.; Yu, D. Convolutional neural networks for speech recognition. IEEE Trans. Audio Speech Lang. Proc. 2014, 22, 1533–1545. [Google Scholar] [CrossRef]
- Peng, P.; Zhao, X.; Pan, X.; Ye, W. Gas classification using deep convolutional neural networks. Sensors 2018, 18, 157. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.J.; Kuo, P.H. A deep cnn-lstm model for particulate matter (PM2. 5) forecasting in smart cities. Sensors 2018, 18, 2220. [Google Scholar] [CrossRef]
- Drif, M.; Perez, P.J.; Aguilera, J.; Almonacid, G.; Gomez, P.; De la Casa, J.; Aguilar, J.D. Univer Project. A grid connected photovoltaic system of 200kWp at Jaen University. Overview and performance analysis. Sol. Energy Mater. Sol. Cells 2007, 91, 670–683. [Google Scholar] [CrossRef]
- European Standard IEC 61724:2017. Photovoltaic System Performance Monitoring. Guidelines for Measurement, Data Exchange and Analysis; International Electrotechnical Commission (IEC): Geneva, Switzerland, 2017. [Google Scholar]
- Marino, D.L.; Amarasinghe, K.; Manic, M. Building energy load forecasting using deep neural networks. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 7046–7051. [Google Scholar]
- Kim, T.Y.; Cho, S.B. Predicting the Household Power Consumption Using CNN-LSTM Hybrid Networks. In Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning, Madrid, Spain, 21–23 November 2018; Springer: Cham, Switzerland, 2018; pp. 481–490. [Google Scholar]
Parameter | Symbol | Unit |
---|---|---|
Irradiance on PV surface | W·m | |
Ambient Temperature | C | |
PVG output current | A | |
PVG output voltage | V | |
PVG output power | W |
2LSTM |
---|
LSTM (32 units) |
dropout (0.25) |
LSTM (32 units) |
dropout (0.25) |
connected (1 unit) |
activation function:Re-Lu |
loss function:MAE |
3CNN + 2LSTM |
2 kernels × 16 filters |
Re-Lu |
2 kernels × 32 filters |
Re-Lu |
2 kernels × 64 filters |
Re-Lu |
dropout (0.25) |
LSTM (32 units) |
dropout (0.25) |
LSTM (32 units) |
dropout (0.25) |
connected (1 unit) |
activation function:Re-Lu |
loss function:MAE |
Model | MAE | RMSD |
---|---|---|
Araujo | 619.09 W | 1349.72 W |
2LSTM | 1349.22 W | 2779.18 W |
3CNN + 2LSTM | 419.17 W | 931.16 W |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almonacid-Olleros, G.; Almonacid, G.; Fernandez-Carrasco, J.I.; Quero, J.M. Opera.DL: Deep Learning Modelling for Photovoltaic System Monitoring. Proceedings 2019, 31, 50. https://doi.org/10.3390/proceedings2019031050
Almonacid-Olleros G, Almonacid G, Fernandez-Carrasco JI, Quero JM. Opera.DL: Deep Learning Modelling for Photovoltaic System Monitoring. Proceedings. 2019; 31(1):50. https://doi.org/10.3390/proceedings2019031050
Chicago/Turabian StyleAlmonacid-Olleros, G., G. Almonacid, J. I. Fernandez-Carrasco, and Javier Medina Quero. 2019. "Opera.DL: Deep Learning Modelling for Photovoltaic System Monitoring" Proceedings 31, no. 1: 50. https://doi.org/10.3390/proceedings2019031050
APA StyleAlmonacid-Olleros, G., Almonacid, G., Fernandez-Carrasco, J. I., & Quero, J. M. (2019). Opera.DL: Deep Learning Modelling for Photovoltaic System Monitoring. Proceedings, 31(1), 50. https://doi.org/10.3390/proceedings2019031050