Metal-Doped Copper Indium Disulfide Heterostructure: Environment-Friendly Hole-Transporting Material toward Photovoltaic Application in Organic-Inorganic Perovskite Solar Cell †
Abstract
:1. Introduction
2. Experimental
2.1. General
2.2. Synthesis of Pr-doped CuInS2 Heterostructure
2.3. Device Fabrication of PSCs
3. Results and Discussion
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhoua, H.; Yanga, L.; Guib, P.; Gricec, C.R.; Songa, Z.; Wang, H.; Fang, G. Ga-doped ZnO nanorod scaffold for high-performance, hole-transport-layer-free, self-powered CH3NH3PbI3 perovskite photodetectors. Sol. Energy Mater. Sol. Cells 2019, 193, 246. [Google Scholar] [CrossRef]
- Wu, W.Q.; Wang, Q.; Fang, Y.; Shao, Y.; Tang, S.; Deng, Y.; Lu, H.; Liu, Y.; Li, T.; Yang, Z.; et al. Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells. Nat. Commun. 2018, 9, 1625. [Google Scholar] [CrossRef]
- Ahn, S.M.; Jung, E.D.; Kim, S.H.; Kim, H.; Lee, S.; Song, M.H.; Kim, J.Y. Nanomechanical Approach for Flexibility of Organic–Inorganic Hybrid Perovskite Solar Cells. Nano Lett. 2019. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.B.; Gouda, L.; Porat, Z.; Gedanken, A. Sonochemical synthesis of CH3NH3PbI3 perovskite ultrafine nanocrystal sensitizers for solar energy applications. Ultrason. Sonochem. 2016, 32, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Rui, Y.; Wang, Y.; Xua, J.; Wang, H.; Zhang, Q. Muller-Buschbaumc, P. SnO2 nanorod arrays with tailored area density as efficient electron transport layers for perovskite solar cells. J. Power Sources 2018, 402, 460–467. [Google Scholar] [CrossRef]
- Maleki, A.; Rahimi, J.; Valadi, K. Sulfonated Fe3O4@PVA superparamagnetic nanostructure: Design, in-situ preparation, characterization and application in the synthesis of imidazoles as a highly efficient organic–inorganic Bronsted acid catalyst. Nano-Struct. Nano-Objects 2019, 18, 100264. [Google Scholar] [CrossRef]
- Lv, M.; Zhu, J.; Huang, Y.; Li, Y.; Shao, Z.; Xu, Y.; Dai, S. Colloidal CuInS2 Quantum Dots as Inorganic Hole-Transporting Material in Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 17482–17488. [Google Scholar] [CrossRef]
- Maleki, A. Fe3O4/SiO2 nanoparticles: An efficient and magnetically recoverable nanocatalyst for the one-pot multicomponent synthesis of diazepines. Tetrahedron 2012, 68, 7827–7833. [Google Scholar] [CrossRef]
- Maleki, A. One-pot multicomponent synthesis of diazepine derivatives using terminal alkynes in the presence of silica-supported superparamagnetic iron oxide nanoparticles. Tetrahedron Lett. 2013, 54, 2055–2059. [Google Scholar] [CrossRef]
- Maleki, A. One-pot three-component synthesis of pyrido [2′, 1′: 2, 3] imidazo [4, 5-c] isoquinolines using Fe3O4@SiO2–OSO3 H as an efficient heterogeneous nanocatalyst. RSC Adv. 2014, 4, 64169–64173. [Google Scholar] [CrossRef]
- Maleki, A. Synthesis of imidazo[1,2-a]pyridines using Fe3O4@SiO2 as an efficient nanomagnetic catalyst via a one-pot multicomponent reaction. Helv. Chim. Acta 2014, 97, 587–593. [Google Scholar] [CrossRef]
- Maleki, A. Green oxidation protocol: Selective conversions of alcohols and alkenes to aldehydes, ketones and epoxides by using a new multiwall carbon nanotube-based hybrid nanocatalyst via ultrasound irradiation. Ultrason. Sonochem. 2018, 40, 460–464. [Google Scholar] [CrossRef]
- Maleki, A. An efficient magnetic heterogeneous nanocatalyst for the synthesis of pyrazinoporphyrazine macrocycles. Polycycl. Aromat. Compd. 2018, 38, 402–409. [Google Scholar] [CrossRef]
- Maleki, A.; Ghassemi, M.; Firouzi-Haji, R. Green multicomponent synthesis of four different classes of six-membered N-containing and O-containing heterocycles catalyzed by an efficient chitosan-based magnetic bionanocomposite. Pure Appl. Chem. 2018, 90, 387–394. [Google Scholar] [CrossRef]
- Maleki, A.; Hajizadeh, Z.; Firouzi-Haji, R. Eco-friendly functionalization of magnetic halloysite nanotube with SO3H for synthesis of dihydropyrimidinones. Microporous Mesoporous Mater. 2018, 259, 46–53. [Google Scholar] [CrossRef]
- Maleki, A.; Hajizadeh, Z.; Abbasi, H. Surface modification of graphene oxide by citric acid and its application as a heterogeneous nanocatalyst in organic condensation reaction. Carbon Lett. 2018, 27, 42–49. [Google Scholar]
- Maleki, A.; Ghalavand, R.; Firouzi-Haji, R. A novel and eco-friendly o-phenylendiamine stabilized on silica-coated magnetic nanocatalyst for the synthesis of indenoquinoline derivatives under ultrasonic-assisted solvent-free conditions. Iran. J. Catal. 2018, 8, 221–229. [Google Scholar]
- Maleki, A.; Akhlaghi, E.; Paydar, R. Design, synthesis, characterization and catalytic performance of a new cellulose-based magnetic nanocomposite in the one-pot three-component synthesis of α-aminonitriles. Appl. Organometal. Chem. 2016, 30, 382–386. [Google Scholar] [CrossRef]
- Maleki, A.; Aghaei, M.; Ghamari, N. Facile synthesis of tetrahydrobenzoxanthenones via a one-pot three-component reaction using an eco-friendly and magnetized biopolymer chitosan-based heterogeneous nanocatalyst. Appl. Organometal. Chem. 2016, 30, 939–942. [Google Scholar] [CrossRef]
- Maleki, A.; Rahimi, R.; Maleki, S. Efficient oxidation and epoxidation using a chromium (VI)-based magnetic nanocomposite. Environ. Chem. Lett. 2016, 14, 195–199. [Google Scholar] [CrossRef]
- Maleki, A.; Movahed, H.; Ravaghi, P.; Kari, T. Facile in situ synthesis and characterization of a novel PANI/Fe3O4/Ag nanocomposite and investigation of catalytic applications. RSC Adv. 2016, 6, 98777–98787. [Google Scholar] [CrossRef]
- Maleki, A.; Aghaei, M.; Hafizi-Atabak, H.R.; Ferdowsi, M. Ultrasonic treatment of CoFe2O4@B2O3-SiO2 as a new hybrid magnetic composite nanostructure and catalytic application in the synthesis of dihydroquinazolinones. Ultrason. Sonochem. 2017, 37, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Maleki, A.; Shaabani, A. Green and efficient synthesis of quinoxaline derivatives via ceric ammonium nitrate promoted and in situ aerobic oxidation of α-hydroxy ketones and α-keto oximes in aqueous media. Chem. Pharm. Bull. 2008, 56, 79–81. [Google Scholar]
- Maleki, A.; Soleimani, E. One-pot three-component synthesis of 3-aminoimidazo[1,2-a] pyridines and -pyrazines in the presence of silica sulfuric acid. Monatsh. Chem. 2007, 138, 73–76. [Google Scholar]
- Maleki, A.; Behnam, M. Tandem oxidation process using ceric ammonium nitrate: Three-component synthesis of trisubstituted imidazoles under aerobic oxidation conditions. Synth. Commun. 2009, 39, 102–110. [Google Scholar]
Electron Transporting Layers | JSC (mA/cm2) | VOC (V) | FF (%) | Efficiency (%) |
---|---|---|---|---|
FTO/TiO2/Perovskite/Pr-doped CIS/Au | 7.22 | 0.76 | 20.03 | 10.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valadi, K.; Maleki, A. Metal-Doped Copper Indium Disulfide Heterostructure: Environment-Friendly Hole-Transporting Material toward Photovoltaic Application in Organic-Inorganic Perovskite Solar Cell. Proceedings 2019, 41, 74. https://doi.org/10.3390/ecsoc-23-06624
Valadi K, Maleki A. Metal-Doped Copper Indium Disulfide Heterostructure: Environment-Friendly Hole-Transporting Material toward Photovoltaic Application in Organic-Inorganic Perovskite Solar Cell. Proceedings. 2019; 41(1):74. https://doi.org/10.3390/ecsoc-23-06624
Chicago/Turabian StyleValadi, Kobra, and Ali Maleki. 2019. "Metal-Doped Copper Indium Disulfide Heterostructure: Environment-Friendly Hole-Transporting Material toward Photovoltaic Application in Organic-Inorganic Perovskite Solar Cell" Proceedings 41, no. 1: 74. https://doi.org/10.3390/ecsoc-23-06624
APA StyleValadi, K., & Maleki, A. (2019). Metal-Doped Copper Indium Disulfide Heterostructure: Environment-Friendly Hole-Transporting Material toward Photovoltaic Application in Organic-Inorganic Perovskite Solar Cell. Proceedings, 41(1), 74. https://doi.org/10.3390/ecsoc-23-06624