Different Approaches to FT-IR Microspectroscopy on X-ray Exposed Human Cells †
Abstract
:1. Introduction
2. Methods
2.1. Materials
2.2. Sample Preparation and Treatment
2.3. FT-IR Micro-Spectroscopy Measurements
2.4. Data Analysis
2.4.1. Preliminary Process
2.4.2. Average Spectra
3. Results and Discussion
3.1. Control Spectra
3.2. Irradiated Spectra
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Baker, M.J.; Trevisan, J.; Bassan, P.; Bhargava, R.; Butler, H.J.; Dorling, K.M.; Fielden, P.R.; Fogarty, S.W.; Fullwood, N.J.; Heys, K.A.; et al. Using Fourier transform IR spectroscopy to analyze biological material. Nat. Protoc. 2014, 9, 1771–1791. [Google Scholar] [CrossRef] [PubMed]
- Gault, N.; Lefaix, J.L. Infrared microspectroscopic characteristics of radiation-induced apoptosis in human lymphocytes. Radiat. Res. 2003, 160, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Meade, A.; Clarke, C.; Byrne, H.; Lyng, F. Fourier transform infrared microspectroscopy and multivariate methods for radiobiological dosimetry. Radiat. Res. 2010, 173, 225–237. [Google Scholar] [CrossRef]
- Bassan, P.; Lee, J.; Sachdeva, A.; Pissardini, J.; Dorling, K.M.; Fletcher, J.S.; Henderson, A.; Gardner, P. The inherent problem of transflection-mode infrared spectroscopic microscopy and the ramifications for biomedical single point imaging applications. Analyst. 2013, 138, 144–157. [Google Scholar] [CrossRef] [PubMed]
- Mayerhöfer, T.G.; Pahlow, S.; Hübner, U.; Popp, J. Removing interference-based effects from the infrared transflectance spectra of thin films on metallic substrates: A fast and wave optics conform solution. Analyst. 2018, 143, 3164–3175. [Google Scholar] [CrossRef] [PubMed]
- Camerlingo, C.; Zenone, F.; Gaeta, G.M.; Riccio, R.; Lepore, M. Wavelet data processing of micro-Raman spectra of biolofical samples. Meas. Sci. Technol. 2006, 17, 298–303. [Google Scholar] [CrossRef]
- Camerlingo, C.; Zenone, F.; Perna, G.; Capozzi, V.; Cirillo, N.; Gaeta, G.M.; Lepore, M. An investigation on micro-Raman spectra and wavelet data analysis for pemphigus vulgaris follow-up monitoring. Sensors 2008, 8, 3656–2664. [Google Scholar] [CrossRef] [PubMed]
- Delfino, I.; Perna, G.; Lasalvia, M.; Capozzi, V.; Manti, L.; Camerlingo, C.; Lepore, M. Visible micro-Raman spectroscopy of single human mammary epithelial cells exposed to X-ray radiation. J. Biomed. Opt. 2015, 20, 035003. [Google Scholar] [CrossRef] [PubMed]
- Lasch, P. Spectral pre-processing for biomedical vibrational spectroscopy and micro-spectroscopy imaging. Chemom. Intell. Lab. Syst. 2013, 117, 100–114. [Google Scholar] [CrossRef]
- Gautam, R.; Vanga, S.; Ariese, F.; Umapathy, S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech. Instrum. 2015, 2, 8. [Google Scholar] [CrossRef]
- Gault, N.; Rigaud, O.; Poncy, J.L.; Lefaix, J.L. Infrared microspectroscopy study of γ-irradiated and H2O2-treated human cells. Int. J. Radiat. Biol. 2005, 81, 767–779. [Google Scholar] [CrossRef] [PubMed]
- Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta 2007, 1767, 1073–1101. [Google Scholar] [CrossRef] [PubMed]
- Zelig, U.; Kapelushnik, J.; Moreh, R.; Mordechai, S.; Nathan, I. Diagnosis of cell death by means of Infrared Spectroscopy. Biophys. J. 2009, 97, 2107–2114. [Google Scholar] [CrossRef] [PubMed]
Peak | ASSIGNMENT | |||
---|---|---|---|---|
cm−1 | DNA/RNA | Protein | Lipid | Carbohydrate |
3200–3500 | O-H ν | |||
3200–3500 | Amide A (-N-H ν) | O-H ν | ||
≈3150 | -NH3+ as. ν (a. a.) | |||
≈2960 | CH3 as. Ν | CH3 as. ν | ||
≈2920 | CH2 as. ν | |||
≈2870 | CH3 s. ν | CH3 s. ν | ||
≈2850 | CH2 s. ν | |||
≈1650 | Amide I (C=O ν, C-N ν) | |||
≈1540 | Amide II (C-N ν, C-NH δ) | |||
≈1450 | CH3 as. δ, CH2 sc. | CH3 as. δ, CH2 sc. | ||
≈1400 | COO− s. ν | |||
≈1250 | PO2− as. Ν | C-O-P ν | ||
≈1080 | PO2− s. ν | C-O-P ν |
Dose | ||
---|---|---|
Drop-Cells | Slide-Cells | |
Control | 0.05 ± 0.02 | 0.05 ± 0.021 |
2 Gy | 0.05 ± 0.03 | 0.04 ± 0.02 |
4 Gy | 0.03 ± 0.01 | 0.04 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portaccio, M.; Manganello, F.; Meschini, R.; Delfino, I.; Ricciardi, V.; Lepore, M. Different Approaches to FT-IR Microspectroscopy on X-ray Exposed Human Cells. Proceedings 2020, 42, 18. https://doi.org/10.3390/ecsa-6-06536
Portaccio M, Manganello F, Meschini R, Delfino I, Ricciardi V, Lepore M. Different Approaches to FT-IR Microspectroscopy on X-ray Exposed Human Cells. Proceedings. 2020; 42(1):18. https://doi.org/10.3390/ecsa-6-06536
Chicago/Turabian StylePortaccio, Marianna, Federico Manganello, Roberta Meschini, Ines Delfino, Valerio Ricciardi, and Maria Lepore. 2020. "Different Approaches to FT-IR Microspectroscopy on X-ray Exposed Human Cells" Proceedings 42, no. 1: 18. https://doi.org/10.3390/ecsa-6-06536
APA StylePortaccio, M., Manganello, F., Meschini, R., Delfino, I., Ricciardi, V., & Lepore, M. (2020). Different Approaches to FT-IR Microspectroscopy on X-ray Exposed Human Cells. Proceedings, 42(1), 18. https://doi.org/10.3390/ecsa-6-06536