Mathematical Tools that Connect Different Indexing Analyses †
Abstract
:1. Introduction
1.1. Notation
- (i)
- ,
- (ii)
- for any , where
- (ii)’
- for any .
- (iii)’
- for only finitely many .
2. Determination of the Primitive Lattice
- (a)
- the reflections of are not forbidden.
- (b)
- For both , (i) none of the reflections of are forbidden for any integer m, or (ii) none of the reflections of are forbidden for any integer .
3. Bravais-Lattice Determination from Unit-Cell Parameters Containing Large Observation Errors
3.1. Theoretical Background
- S0 = I3 (3 × 3 identity matrix).
- S0 = A3 in Equation (4).
3.2. Computation Results
4. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Oishi-Tomiyasu, R. Robust powder auto-indexing using many peaks. J. Appl. Crystallogr. 2014, 47, 593–598. [Google Scholar] [CrossRef]
- Oishi-Tomiyasu, R.; Tanaka, T.; Nakagawa, J. Distribution Rules of Systematic Absence and Generalized de Wolff Figure of Merit Applied to EBSD Ab-Initio Indexing. Available online: https://arxiv.org/abs/2003.13403 (accessed on 31 March 2020).
- Dong, C.; Wu, F.; Chen, H. Correction of zero shift in powder diffraction patterns using the reflection-pair method. J. Appl. Crystallogr. 1999, 32, 850–853. [Google Scholar] [CrossRef]
- Ram, F.; Zaefferer, S.; Jäpel, T.; Raabe, D. Error analysis of the crystal orientations and disorientations obtained by the classical electron backscatter diffraction technique. J. Appl. Crystallogr. 2015, 48, 797–813. [Google Scholar] [CrossRef]
- de Wolff, P.M. A Simplified Criterion for the Reliability of a Powder Pattern Indexing. J. Appl. Crystallogr. 1968, 1, 108–113. [Google Scholar] [CrossRef]
- Hahn, T. International Tables for Crystallography Vol. A, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Michel, L. Symmetry, invariants, topology. iv. fundamental concepts for the study of crystal symmetry. Phys. Rep. 2001, 341, 265–336. [Google Scholar] [CrossRef]
- Venkov, B.A. On the reduction of positive quadratic forms. Izv. Akad. Nauk SSSR Ser. Mat. 1940, 134, 37–52. [Google Scholar]
- Oishi-Tomiyasu, R. Distribution rules of systematic absences on the Conway topograph and their application to powder auto-indexing. Acta Crystallogr. A 2013, 69, 603–610. [Google Scholar] [CrossRef]
- Ito, T. A general powder X-ray photography. Nature 1949, 164, 755–756. [Google Scholar] [CrossRef]
- Grosse-Kunstleve, R.W.; Sauter, N.K.; Adams, P.D. Numerically stable algorithms for the computation of reduced unit cells. Acta Crystallogr. A 2004, 60, 1–6. [Google Scholar] [CrossRef]
- Plesken, W.; Souvignier, B.B. Computing isometries of lattices. J. Symb. Comput. 1997, 24, 327–334. [Google Scholar] [CrossRef]
- Andrews, L.C.; Bernstein, H.J. Lattices and reduced cells as points in 6-space and selection of bravais lattice type by projections. Acta Crystallogr. A 1988, 44, 1009–1018. [Google Scholar] [CrossRef]
- Andrews, L.C.; Bernstein, H.J. The geometry of Niggli reduction: BGAOL–embedding Niggli reduction and analysis of boundaries. J. Appl. Crystallogr. 2014, 47, 346–359. [Google Scholar] [CrossRef]
- Gruber, B. The relationship between reduced cells in a general Bravais lattice. Acta Crystallogr. A 1973, 29, 433–440. [Google Scholar] [CrossRef]
- Burzlaff, H.; Zimmermann, H. On the metrical properties of lattices. Z. Krist. Cryst. Mater. 1985, 170, 247–262. [Google Scholar] [CrossRef]
- Zimmermann, H.; Burzlaff, H. Delos—A computer program for the determination of a unique conventional cell. Z. Krist. Cryst. Mater. 1985, 170, 241–246. [Google Scholar] [CrossRef]
- Oishi-Tomiyasu, R. Rapid bravais-lattice determination algorithm for lattice parameters containing large observation errors. Acta Crystallogr. Sect. A 2012, 68, 525–535. [Google Scholar] [CrossRef] [PubMed]
- de Wolff, P.M. Detection of simultaneous zone relations among powder diffraction lines. Acta Crystallogr. 1958, 11, 664–665. [Google Scholar] [CrossRef]
- Visser, J.W. A fully automatic program for finding the unit cell from powder data. J. Appl. Crystallogr. 1969, 2, 89–95. [Google Scholar] [CrossRef]
- Kohlbeck, F.; Horl, E.M. Trial and error indexing program for powder patterns of monoclinic substances. J. Appl. Crystallogr. 1978, 11, 60–61. [Google Scholar] [CrossRef]
- Boultif, A.; Louër, D. Powder pattern indexing with the dichotomy method. J. Appl. Crystallogr. 2004, 37, 724–731. [Google Scholar] [CrossRef]
- Dingley, D.J.; Wright, S.I. Determination of crystal phase from an electron backscatter diffraction pattern. J. Appl. Crystallogr. 2009, 42, 234–241. [Google Scholar] [CrossRef]
- Li, L.; Ouyang, S.; Yang, Y.; Han, M. EBSDL: A computer program for determining an unknown Bravais lattice using a single electron backscatter diffraction pattern. J. Appl. Crystallogr. 2014, 47, 1466–1468. [Google Scholar] [CrossRef]
- Li, L.; Han, M. Determining the Bravais lattice using a single electron backscatter diffraction pattern. J. Appl. Crystallogr. 2015, 48, 107–115. [Google Scholar] [CrossRef]
Prepared sets in codes | For a domain that fulfills (i), (ii)’, (iii)’ in Section 1.1, and its topological closure , let be the finite set consisting of all with For each finite group () contained in , prepare the set of linear subspace consisting of all with . (Namely, are lattice characters [6].)Finite set H0 consisting of operations g for which may contain when is in |
Input parameters | Gramian (assume by exchanging the basis) |
Step 1 | For any , if is close to the domain (i.e., nearly reduced), do the following; for each (), calculate closest to by projecting on Lk. If and S are close to each other, store g, S in the array for the Bravais type of . |
Step 2 | Output the stored g, S after removing duplicates. |
Bravais Type B | S0 | H0 = {1}? | The Number of Linear Subspaces VB (The Number When H0 = {1}) |
---|---|---|---|
Primitive monoclinic | Yes | 3 (3) … Table 3 in [19] | |
Face-centered orthorhombic | Yes | 3 (3) … Table 4 in [19] | |
Body-centered orthorhombic 1 | Yes | … Table 5 in [19] | |
Rhombohedral | conditionally yes 2 | 64 (16) … Table 6 in [19] | |
Base-centered monoclinic | conditionally yes 2 | 69 (21) … Table 8 in [19] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oishi-Tomiyasu, R. Mathematical Tools that Connect Different Indexing Analyses. Proceedings 2020, 62, 8. https://doi.org/10.3390/proceedings2020062008
Oishi-Tomiyasu R. Mathematical Tools that Connect Different Indexing Analyses. Proceedings. 2020; 62(1):8. https://doi.org/10.3390/proceedings2020062008
Chicago/Turabian StyleOishi-Tomiyasu, Ryoko. 2020. "Mathematical Tools that Connect Different Indexing Analyses" Proceedings 62, no. 1: 8. https://doi.org/10.3390/proceedings2020062008
APA StyleOishi-Tomiyasu, R. (2020). Mathematical Tools that Connect Different Indexing Analyses. Proceedings, 62(1), 8. https://doi.org/10.3390/proceedings2020062008