Fright or Flight? Behavioural Responses of Kangaroos to Drone-Based Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Drone Deployments
2.3. Kangaroo Behaviour
2.3.1. Field Observations
2.3.2. Video Analyses
2.4. Statistical Analyses
2.4.1. Field Observations
2.4.2. Video Analyses
2.5. Ethics and Permits
3. Results
3.1. Field Observations
3.2. Video Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Linchant, J.; Lisein, J.; Semeki, J.; Lejeune, P.; Vermeulen, C. Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges. Mammal Rev. 2015, 45, 239–252. [Google Scholar] [CrossRef]
- Hodgson, J.C.; Mott, R.; Baylis, S.M.; Pham, T.T.; Wotherspoon, S.; Kilpatrick, A.D.; Raja, S.R.; Reid, I.; Terauds, A.; Koh, L.P. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 2018, 9, 1160–1167. [Google Scholar] [CrossRef]
- Mustafa, O.; Barbosa, A.; Krause, D.J.; Peter, H.U.; Vieira, G.; Rümmler, M.-C. State of knowledge: Antarctic wildlife response to unmanned aerial systems. Pol. Biol. 2018, 41, 2377. [Google Scholar] [CrossRef]
- Bennitt, E.; Bartlam-Brooks, H.L.A.; Hubel, T.Y.; Wilson, A.M. Terrestrial mammalian wildlife responses to unmanned aerial systems approaches. Sci. Rep. 2019, 9, 2142. [Google Scholar] [CrossRef] [PubMed]
- Johnston, D.W. Unoccupied Aircraft Systems in Marine Science and Conservation. Ann. Rev. Mar. Sci. 2019, 11, 439–463. [Google Scholar] [CrossRef] [PubMed]
- Torres, L.G.; Nieukirk, S.L.; Lemos, L.; Chandler, T.E. Drone Up! Quantifying Whale Behavior From a New Perspective Improves Observational Capacity. Front. Mar. Sci. 2018, 5. [Google Scholar] [CrossRef]
- Hodgson, A.; Kelly, N.; Peel, D. Unmanned Aerial Vehicles (UAVs) for Surveying Marine Fauna: A Dugong Case Study. PLoS ONE 2013, 8, e79556. [Google Scholar] [CrossRef]
- Burnett, J.D.; Lemos, L.; Barlow, D.; Wing, M.G.; Chandler, T.; Torres, L.G. Estimating morphometric attributes of baleen whales with photogrammetry from small UASs: A case study with blue and gray whales. Mar. Mammal Sci. 2019, 35, 108–139. [Google Scholar] [CrossRef]
- McEvoy, J.F.; Hall, G.P.; McDonald, P.G. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: Disturbance effects and species recognition. PeerJ 2016, 4, e1831. [Google Scholar] [CrossRef]
- Lyons, M.; Brandis, K.; Callaghan, C.; McCann, J.; Mills, C.; Ryall, S.; Kingsford, R. Bird interactions with drones, from individuals to large colonies. bioRxiv 2017, 109926. [Google Scholar] [CrossRef]
- Weimerskirch, H.; Prudor, A.; Schull, Q. Flights of drones over sub-Antarctic seabirds show species- and status-specific behavioural and physiological responses. Pol. Biol. 2018, 41, 259–266. [Google Scholar] [CrossRef]
- Vas, E.; Lescroël, A.; Duriez, O.; Boguszewski, G.; Grémillet, D. Approaching birds with drones: first experiments and ethical guidelines. Biol. Lett. 2015, 11. [Google Scholar] [CrossRef]
- Bevan, E.; Whiting, S.; Tucker, T.; Guinea, M.; Raith, A.; Douglas, R. Measuring behaviorral responses of sea turtles, saltwater crocodiles, and crested terns to drone disturbance to define ethical operating thresholds. PLoS ONE 2018, 13, e0194460. [Google Scholar] [CrossRef]
- Mulero-Pázmány, M.; Jenni-Eiermann, S.; Strebel, N.; Sattler, T.; Negro, J.J.; Tablado, Z. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. PLoS ONE 2017, 12, e0178448. [Google Scholar] [CrossRef]
- Rümmler, M.-C.; Mustafa, O.; Maercker, J.; Peter, H.-U.; Esefeld, J. Measuring the influence of unmanned aerial vehicles on Adélie penguins. Pol. Biol. 2016, 39, 1329–1334. [Google Scholar] [CrossRef]
- Christiansen, F.; Rojano-Doñate, L.; Madsen, P.T.; Bejder, L. Noise Levels of Multi-Rotor Unmanned Aerial Vehicles with Implications for Potential Underwater Impacts on Marine Mammals. Front. Mar. Sci. 2016, 3. [Google Scholar] [CrossRef]
- Ditmer, M.A.; Vincent, J.B.; Werden, L.K.; Tanner, J.C.; Laske, T.G.; Iaizzo, P.A.; Garshelis, D.L.; Fieberg, J.R. Bears Show a Physiological but Limited Behavioral Response to Unmanned Aerial Vehicles. Curr. Biol. 2015, 25, 2278–2283. [Google Scholar] [CrossRef]
- Taylor, R.J. Group size in the eastern grey kangaroo, Macropus giganteus, and the wallaroo, Macropus robustus. Wildl. Res. 1982, 9, 229–237. [Google Scholar] [CrossRef]
- Moore, B.D.; Coulson, G.; Way, S. Habitat selection by adult female eastern grey kangaroos. Wildl. Res. 2002, 29, 439–445. [Google Scholar] [CrossRef]
- Best, E.C.; Seddon, J.M.; Dwyer, R.G.; Goldizen, A.W. Social preference influences female community structure in a population of wild eastern grey kangaroos. Anim. Behav. 2013, 86, 1031–1040. [Google Scholar] [CrossRef]
- Kaufmann, J.H. Field observations of the social behaviour of the eastern grey kangaroo, Macropus giganteus. Anim. Behav. 1975, 23 Pt 1, 214–221. [Google Scholar] [CrossRef]
- Jaremovic, R.V.; Croft, D.B. Social-organization of the eastern gray kangaroo (Macropodidae, marsupialia) in southeastern New-south-wales. 1. Groups and group home ranges. Mammalia 1991, 55, 169–185. [Google Scholar] [CrossRef]
- Jaremovic, R.V.; Croft, D.B. Comparison of Techniques to Determine Eastern Grey Kangaroo Home Range. J. Wildl. Manag. 1987, 51, 921–930. [Google Scholar] [CrossRef]
- Gentle, M.; Finch, N.; Speed, J.; Pople, A. A comparison of unmanned aerial vehicles (drones) and manned helicopters for monitoring macropod populations. Wildl. Res. 2018, 45, 586–594. [Google Scholar] [CrossRef]
- Brunton, E.A.; Srivastava, S.K.; Burnett, S. Spatial ecology of an urban eastern grey kangaroo (Macropus giganteus) population: Local decline driven by kangaroo–vehicle collisions. Wildl. Res. 2018, 45, 685–695. [Google Scholar] [CrossRef]
- Favreau, F.-R.; Goldizen, A.W.; Pays, O. Interactions among social monitoring, anti-predator vigilance and group size in eastern grey kangaroos. Proc. R. Soc. B Biol. Sci. 2010, 277, 2089–2095. [Google Scholar] [CrossRef]
- Jarman, P.J. Group size and activity in eastern grey kangaroos. Anim. Behav. 1987, 35, 1044–1050. [Google Scholar] [CrossRef]
- Pays, O.; Jarman, P.J.; Loisel, P.; Gerard, J.-F. Coordination, independence or synchronization of individual vigilance in the eastern grey kangaroo? Anim. Behav. 2007, 73, 595–604. [Google Scholar] [CrossRef]
- Elgar, M.A. Predator vigilance and group size in mammals and birds: A critical review of the empirical evidence. Biol. Rev. 1989, 64, 13–33. [Google Scholar] [CrossRef]
- Carter, A.J.; Pays, O.; Goldizen, A.W. Individual variation in the relationship between vigilance and group size in eastern grey kangaroos. Behav. Ecol. Sociobiol. 2009, 64, 237–245. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Bates, D.; Machler, M.; Bolker, B.M.; Walker, S.C. lme4: Linear Mixed-Effects Models Using Eigen and S4. R Package. 2014. Available online: https://cran.r-project.org/web/packages/lme4/lme4.pdf (accessed on 31 January 2017).
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.; White, J.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- Banks, P.B. Predation-sensitive grouping and habitat use by eastern grey kangaroos: A field experiment. Anim. Behav. 2001, 61, 1013–1021. [Google Scholar] [CrossRef]
- Favreau, F.R.; Pays, O.; Fritz, H.; Goulard, M.; Best, E.C.; Goldizen, A.W. Predators, food and social context shape the types of vigilance exhibited by kangaroos. Anim. Behav. 2015, 99, 109–121. [Google Scholar] [CrossRef]
- Mulero-Pázmány, M.; Stolper, R.; van Essen, L.D.; Negro, J.J.; Sassen, T. Remotely Piloted Aircraft Systems as a Rhinoceros Anti-Poaching Tool in Africa. PLoS ONE 2014, 9, e83873. [Google Scholar] [CrossRef]
- Bonnin, N.; Van Andel, A.C.; Kerby, J.T.; Piel, A.K.; Pintea, L.; Wich, S.A. Assessment of Chimpanzee Nest Detectability in Drone-Acquired Images. Drones 2018, 2, 17. [Google Scholar] [CrossRef]
- Wich, S.; Dellatore, D.; Houghton, M.; Ardi, R.; Koh, L.P. A preliminary assessment of using conservation drones for Sumatran orang-utan (Pongo abelii) distribution and density. J. Unmanned Veh. Syst. 2015, 4, 45–52. [Google Scholar] [CrossRef]
- Birnie-Gauvin, K.; Peiman, K.S.; Gallagher, A.J.; de Bruijn, R.; Cooke, S.J. Sublethal consequences of urban life for wild vertebrates. Environ. Rev. 2016, 24, 416–425. [Google Scholar] [CrossRef]
- Goebel, M.E.; Perryman, W.L.; Hinke, J.T.; Krause, D.J.; Hann, N.A.; Gardner, S.; LeRoi, D.J. A small unmanned aerial system for estimating abundance and size of Antarctic predators. Pol. Biol. 2015, 38, 619–630. [Google Scholar] [CrossRef]
- Wolf, I.D.; Croft, D.B. Minimizing disturbance to wildlife by tourists approaching on foot or in a car: A case study of kangaroos in the Australian rangelelands. Appl. Anim. Behav. Sci. 2010, 126, 75–84. [Google Scholar] [CrossRef]
Type of Behaviour | Behaviour | Code | Type | Description of Behaviour |
---|---|---|---|---|
Vigilance | Antipredator | PC | Event | Focal animal is alert, head raised above horizontal plane when standing or upright, with head facing perceived threat |
Social | SC | Event | Focal animal is alert, head raised above horizontal plane when standing or upright, with head facing other members of mob | |
Flee (<10 m) | FL | Event | Focal animals flee from original position to a position less than 10 m away. | |
Flee (>10 m) | FL | Event | Focal animals flee from original position to a position more than 10 m away. | |
Food-Related | Forage | F | State | Focal animal is consuming food in its environment |
Solitary | Rest | R | State | Focal animal is laying down and stays in one place |
Other | Out of sight | OOS | State | Focal animal is out of sight |
Coefficient | Estimate | Standard Error | Z | p-Value | |
---|---|---|---|---|---|
(a) Frequency Fled ~ Drone Altitude | |||||
Intercept | 2.773 | 0.25 | 11.09 | <0.001 | |
Drone altitude 60 m | −2.079 | 0.75 | −2.773 | 0.005 * | |
Drone altitude 100 m | −1.386 | 0.559 | −2.48 | 0.013 * | |
Drone altitude 120 m | −1.386 | 0.559 | −2.48 | 0.013 * | |
(b) Frequency of Act ~ Behavioural Response to Drone | |||||
Intercept | 2.8904 | 0.2357 | 12.263 | <0.001 | |
Flight | −0.4925 | 0.3827 | −1.287 | 0.198 | |
Full Flight | 0.0.0000 | 0.3333 | 0.000 | 1.000 | |
Vigilance | 1.5404 | 0.2597 | 5.931 | <0.001 * |
Estimate | Standard Error | Z/(t) | p-Value | |
---|---|---|---|---|
(a) Fled from Drone ~ Daily Deployment Replicate + Behaviour at First Sight | ||||
Intercept | −1.9979 | 0.6864 | −2.911 | 0.004 * |
Daily deployment replicate | 0.9338 | 0.2522 | 3.703 | <0.001 * |
Behaviour at first sight (foraging) | 0.2708 | 0.7287 | −0.372 | 0.710 |
Behaviour at first sight (vigilant) | 2.5151 | 1.0091 | 2.869 | 0.013 * |
(b) Number of vigilant acts ~ Mob size + Site | ||||
Intercept | 0.495 | 0.1184 | 4.183 | <0.001 * |
Mob size | −0.413 | 0.1179 | −3.512 | <0.001 * |
Site (Peri-urban) | 0.403 | 0.2223 | 1.813 | 0.069 |
(c) Total Time Spent Vigilant ~ Drone Deployment + Distance to Observer | ||||
Intercept | 47.408 | 6.846 | (6.925) | <0.001 * |
Drone Deployment (present) | 17.434 | 7.133 | (2.444) | 0.016 * |
Distance to Observer | −12.359 | 5.863 | (−2.108) | 0.0384 * |
(d) Antipredator Vigilance Time ~ Drone Deployment + Distance to Observer | ||||
Intercept | 77.6 | 17.2079 | (4.510) | <0.001 * |
Drone Deployment | 14.5526 | 7.4033 | (1.966) | 0.0530 * |
Distance to Observer | −0.5737 | 0.2523 | −2.274 | 0.0259 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunton, E.; Bolin, J.; Leon, J.; Burnett, S. Fright or Flight? Behavioural Responses of Kangaroos to Drone-Based Monitoring. Drones 2019, 3, 41. https://doi.org/10.3390/drones3020041
Brunton E, Bolin J, Leon J, Burnett S. Fright or Flight? Behavioural Responses of Kangaroos to Drone-Based Monitoring. Drones. 2019; 3(2):41. https://doi.org/10.3390/drones3020041
Chicago/Turabian StyleBrunton, Elizabeth, Jessica Bolin, Javier Leon, and Scott Burnett. 2019. "Fright or Flight? Behavioural Responses of Kangaroos to Drone-Based Monitoring" Drones 3, no. 2: 41. https://doi.org/10.3390/drones3020041
APA StyleBrunton, E., Bolin, J., Leon, J., & Burnett, S. (2019). Fright or Flight? Behavioural Responses of Kangaroos to Drone-Based Monitoring. Drones, 3(2), 41. https://doi.org/10.3390/drones3020041