Effect of Application Height and Ground Speed on Spray Pattern and Droplet Spectra from Remotely Piloted Aerial Application Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Spray Pattern and Effective Swath
2.2. Spray Droplet Spectra
2.1.1. WSP Samplers
2.1.2. Laser Droplet Sizing
2.3. Data Analysis
3. Results
3.1. Spray Pattern Uniformity and Effective Swath Using Method 1
3.2. Spray Pattern Uniformity and Effective Swath Using Method 2
3.3. Comparison of Swath Analysis Techniques
3.4. Spray Droplet Spectra on WSP Samplers
3.5. Wind Tunnel Analysis of Spray Droplet Spectra
4. Discussion
4.1. Spray Pattern Uniformity and Effective Swath
4.2. Spray Droplet Spectra
5. Conclusions
Author Contributions
Funding
Acknowledgments
Disclaimer
Conflicts of Interest
References
- Baluja, J.; Diago, M.P.; Balda, P.; Zorer, R.; Meggio, F.; Morales, F.; Tardaguila, J. Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (uav). Irrig. Sci. 2012, 30, 511–522. [Google Scholar]
- Ge, Y.; Thomasson, J.A.; Sui, R. Remote sensing of soil properties in precision agriculture: A review. Front. Earth Sci. 2011, 5, 229–238. [Google Scholar] [CrossRef]
- Saari, H.; Pellikka, I.; Pesonen, L.; Tuominen, S.; Heikkilä, J.; Holmlund, C.; Mäkynen, J.; Ojala, K.; Antila, T. Unmanned aerial vehicle (uav) operated spectral camera system for forest and agriculture applications. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII; International Society for Optics and Photonics; SPIE: Bellingham, WA, USA, 2011; p. 81740H. [Google Scholar]
- Qin, W.-C.; Qiu, B.-J.; Xue, X.-Y.; Chen, C.; Xu, Z.-F.; Zhou, Q.-Q. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers. Crop Prot. 2016, 85, 79–88. [Google Scholar]
- Qin, W.; Xue, X.; Zhang, S.; Gu, W.; Wang, B. Droplet deposition and efficiency of fungicides sprayed with small uav against wheat powdery mildew. Int. J. Agric. Biol. Eng. 2018, 11, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Xue, X.; Qin, W.; Sun, Z.; Zhang, S.; Zhou, L.; Wu, P. Effects of n-3 uav spraying methods on the efficiency of insecticides against planthoppers and cnaphalocrocis medinalis. Acta Phyophylacica Sin. 2013, 40, 273–278. [Google Scholar]
- Faithpraise, F.; Idung, J.; Chatwin, C.; Young, R.; Birch, P. Modelling the control of african armyworm (spodoptera exempta) infestations in cereal crops by deploying naturally beneficial insects. Biosys. Eng. 2015, 129, 268–276. [Google Scholar]
- Ansley, R.J.; Ansley, R.J.; Jones, D.L.; Jacoby, P.W.; Kramp, B.A.; Pinchak, W.E.; Teague, W.R. Long-term grass yields following chemical control of honey mesquite. J. Range Manag. 2004, 57, 49–57. [Google Scholar]
- Zhang, Y.; Li, Y.; He, Y.; Liu, F.; Cen, H.; Fang, H. Near ground platform development to simulate uav aerial spraying and its spraying test under different conditions. Comput. Electron. Agric. 2018, 148, 8–18. [Google Scholar]
- Martinez-Guanter, J.; Agüera, P.; Agüera, J.; Pérez-Ruiz, M. Spray and economics assessment of a uav-based ultra-low-volume application in olive and citrus orchards. Precis. Agric. 2019. [Google Scholar] [CrossRef]
- Hunter, J.E., III; Gannon, T.W.; Richardson, R.J.; Yelverton, F.H.; Leon, R.G. Integration of remote-weed mapping and an autonomous spraying unmanned aerial vehicle for site-specific weed management. Pest Manag. Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Woldt, W.; Martin, D.; Latheef, M.; Kruger, G.; Wright, R.; McMechan, J.; Proctor, C.; Jackson-Ziems, T. Field evaluation of commercially available small unmanned aircraft crop spray systems. In 2018 ASABE Annual International Meeting; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2018; pp. 1–15. [Google Scholar]
- Grift, T.; Walker, J.; Gardisser, D. Spread pattern analysis tool (spat): II. Examples of aircraft pattern analysis. Trans. ASAE 2000, 43, 1351. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, T.G.; Reichard, D.L.; Khan, A.S. Spray deposition from a row-crop airblast sprayer. Trans. ASAE 1983, 26, 338. [Google Scholar]
- Whitney, R.W.; Gardisser, D.R. Dropletscan Operators Manual; WRK of Oklahoma and WRK of Arkansas: Stillwater, OK, USA, 2003. [Google Scholar]
- ASABE. Spray Nozzle Classification by Droplet Spectra; ASABE: St. Joseph, MI, USA, 2018. [Google Scholar]
- Hoffmann, W.C.; Kirk, I.W. Comparison of three imaging systems for water-sensitive papers. Appl. Eng. Agric. 2005, 21, 961–964. [Google Scholar] [CrossRef]
- Fritz, B.K.; Hoffmann, W.C. Measuring spray droplet size from agricultural nozzles using laser diffraction. J. Vis. Exp. 2016, 16, e54533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- SAS. SAS Version 9.4; SAS Institute. Inc.: Cary, NC, USA, 2012. [Google Scholar]
- Saxton, A. User’s Guide for Design and Analysis: Sas Macro Collection Danda.Sas.; University of Tennessee: Knoxville, TN, USA, 2012. [Google Scholar]
- SAS. Jmp® 14; SAS Institute Inc.: Cary, NC, USA, 2018. [Google Scholar]
- Giles, D.; Billing, R. Deployment and performance of a uav for crop spraying. Chem. Eng. Trans. 2015, 44, 307–312. [Google Scholar]
- Mat Su, A.; Yahya, A.; Mazlan, N.; Hamdani, M.S.A. Evaluation of the spraying dispersion and uniformity using drone in rice field application. In Proceedings of the 2018 Msae Conference, at Faculty of Engineering, Universiti Putra Malaysia, Selangor, Malaysia, 7–8 February 2018; pp. 1–4. [Google Scholar]
- Richardson, B.; Rolando, C.A.; Somchit, C.; Dunker, C.; Strand, T.M.; Kimberley, M.O. Swath pattern analysis from a multi-rotor unmanned aerial vehicle configured for pesticide application. Pest Manag. Sci. 2019. [Google Scholar] [CrossRef]
- Shilin, W.; Jianli, S.; Xiongkui, H.; Le, S.; Xiaonan, W.; Changling, W.; Zhichong, W.; Yun, L. Performances evaluation of four typical unmanned aerial vehicles used for pesticide application in china. Int. J. Agric. Biol. Eng. 2017, 10, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Richardson, B.; Kimberley, M.; Gous, S. Aircraft calibration for pest eradication operations using pesticides formulated as solid baits. Trans. ASABE 2011, 54, 1245–1254. [Google Scholar] [CrossRef]
- Richardson, B.; Kimberley, M.O.; Schou, W.C. Defining acceptable levels of herbicide deposit variation from aerial spraying. Appl. Eng. Agric. 2004, 20, 259–267. [Google Scholar]
- Wen, Y.; Zhang, R.; Chen, L.; Huang, Y.; Yi, T.; Xu, G.; Li, L.; Hewitt, A.J. A new spray deposition pattern measurement system based on spectral analysis of a fluorescent tracer. Comput. Electron. Agric. 2019, 160, 14–22. [Google Scholar]
- Lan, Y.; Chen, S. Current status and trends of plant protection uav and its spraying technology in china. Int. J. Precis. Agric. Aviat. 2018, 1, 1–9. [Google Scholar] [CrossRef]
- Yongjun, Z.; Shenghui, Y.; Chunjiang, Z.; Liping, C.; Lan, Y.; Yu, T. Modelling operation parameters of uav on spray effects at different growth stages of corns. Int. J. Agric. Biol. Eng. 2017, 10, 57–66. [Google Scholar]
- Richardson, B.; Rolando, C.A.; Kimberley, M.O.; Strand, T.M. Spray application efficiency from a multi-rotor unmanned aerial vehicle configured for aerial pesticide application. Trans. ASABE 2019. [Google Scholar] [CrossRef]
- Kirk, I.W.; Bouse, L.F.; Carlton, J.B.; Franz, E.; Stermer, R.A. Aerial spray deposition in cotton. Trans. ASAE 1992, 35, 1393–1399. [Google Scholar] [CrossRef]
- Williams, W.; Gardisser, D.; Wolf, R.; Whitney, R. Field and Wind Tunnel Droplet Spectrum Data for the cp Nozzle; Paper No. AA99-007; American Society of Agricultural Engineers/National Agricultural Aviation Association: Reno, NV, USA, 1999. [Google Scholar]
- Zabkiewicz, J. Adjuvants and herbicidal efficacy-present status and future prospects. Weed Res. Oxf. 2000, 40, 139–149. [Google Scholar] [CrossRef]
- Elsik, C.M.; Stridde, H.M.; Schweiner, T.M. Spray drift reduction technology adjuvant evaluation. ASTM Int. 2010, 7, 1–19. [Google Scholar] [CrossRef]
- Hewitt, A.J.; Johnson, D.R.; Fish, J.D.; Hermansky, C.G.; Valcore, D.L. Development of the spray drift task force database for aerial applications. Environ. Toxicol. Chem. 2002, 21, 648–658. [Google Scholar] [CrossRef]
- Teske, M.; Thistle, H.; Mickle, R. Modeling finer droplet aerial spray drift and deposition. Appl. Eng. Agric. 2000, 16, 351–357. [Google Scholar] [CrossRef]
- Downer, R.; Wolf, T.; Chapple, A.; Hall, F.; Hazen, J. Characterizing the impact of drift management adjuvants on the dose transfer process; Proc. Fourth Int. Symp. on Adjuvants for Agrochemicals: Rotorua, New Zealand, 1995. [Google Scholar]
- Hoffmann, W.C.; Fritz, B.K.; Thornburg, J.W.; Bagley, W.; Birchfield, N.B.; Ellenberger, J. Spray Drift Reduction Evaluations of Spray Nozzles Using a Standardized Testing Protocol; DTIC Document: Fort Belvoir, VA, USA, 2010. [Google Scholar]
Meteorological Parameters 1 | Study Date (2018) | ||
---|---|---|---|
7-May | 8-May | 9-May | |
Wind Speed (m/s) | 2.50 ± 0.61 | 4.59 ± 1.13 | 4.56 ± 0.86 |
Wind Direction (°) | 217 ± 27.30 | 187.5 ± 19.09 | 190.1 ± 8.56 |
Sigma Theta (°) | 21.4 ± 21.36 | 12.8 ± 3.59 | 13.1 ± 2.62 |
Wind Gust (m/s) | 3.8 ± 0.82 | 5.8 ± 1.48 | 5.8 ± 0.94 |
Temperature (°C) | 29.7 ± 2.61 | 27.8 ± 3.71 | 25.4 ± 1.97 |
Relative Humidity (%) | 48.4 ± 11.62 | 53.4 ± 15.41 | 67.3 ± 11.97 |
Platform | Ground Speed (m/s) | Application Height (m) | Method 1 Effective Swath (m) | Method 2 Effective Swath (m) | Difference (m) | Change (%) |
---|---|---|---|---|---|---|
V6A | 1 | 2 | 5.2 | 4.8 | −0.4 | −8.3 |
V6A | 1 | 3 | 6.4 | 5.7 | −0.7 | −12.3 |
V6A | 1 | 4 | 4.0 | 1.8 | −2.2 | −122.2 |
V6A | 3 | 2 | 5.8 | 4.3 | −1.5 | −34.9 |
V6A | 3 | 3 | 4.6 | 3.1 | −1.5 | −48.4 |
V6A | 3 | 4 | 5.2 | 3.4 | −1.8 | −52.9 |
V6A | 5 | 2 | 6.4 | 4.4 | −2.0 | −45.5 |
V6A | 5 | 3 | 5.2 | 3.7 | −1.5 | −40.5 |
V6A | 5 | 4 | 4.0 | 4.3 | 0.3 | 7.0 |
V6A | 7 | 2 | 5.2 | 5.5 | 0.3 | 5.5 |
V6A | 7 | 3 | 5.2 | 3.1 | −2.1 | −67.7 |
V6A | 7 | 4 | 7.0 | 5.2 | −1.8 | −34.6 |
Average | 5.4 | 4.1 | −1.2 | −37.9 | ||
MG-1 | 1 | 2 | 7.6 | 7.5 | −0.1 | −1.3 |
MG-1 | 1 | 3 | 6.4 | 5.5 | −0.9 | −16.4 |
MG-1 | 1 | 4 | 5.8 | 5.1 | −0.7 | −13.7 |
MG-1 | 3 | 2 | 7.6 | 6.9 | −0.7 | −10.1 |
MG-1 | 3 | 3 | 7.0 | 6.6 | −0.4 | −6.1 |
MG-1 | 3 | 4 | 5.8 | 3.0 | −2.8 | −93.3 |
MG-1 | 5 | 2 | 6.4 | 5.9 | −0.5 | −8.5 |
MG-1 | 5 | 3 | 7.0 | 3.9 | −3.1 | −79.5 |
MG-1 | 5 | 4 | 4.6 | 3.4 | −1.2 | −35.3 |
MG-1 | 7 | 2 | 7.6 | 6.6 | −1.0 | −15.2 |
MG-1 | 7 | 3 | 5.8 | 3.7 | −2.1 | −56.8 |
MG-1 | 7 | 4 | 5.8 | 4.8 | −1.0 | −20.8 |
Average | 6.5 | 5.3 | −1.2 | −29.7 |
Platform | Speed (m/s) | Application Height (m) | Method 1 Effective Swath (m) | Theoretical Application Rate (L/ha) | Measured Application Rate (L/ha) | Spray Efficiency (%) |
---|---|---|---|---|---|---|
V6A | 1 | 2 | 5.2 | 25.3 | 14.9 | 58.8 |
V6A | 1 | 3 | 6.4 | 20.6 | 14.9 | 72.6 |
V6A | 1 | 4 | 4.0 | 32.9 | 6.4 | 19.3 |
V6A | 3 | 2 | 5.8 | 7.6 | 6.4 | 84.6 |
V6A | 3 | 3 | 4.6 | 9.5 | 4.7 | 49.2 |
V6A | 3 | 4 | 5.2 | 8.4 | 2.0 | 23.8 |
V6A | 5 | 2 | 6.4 | 4.1 | 5.3 | 129.9 |
V6A | 5 | 3 | 5.2 | 5.1 | 2.2 | 42.5 |
V6A | 5 | 4 | 4.0 | 6.6 | 1.5 | 22.5 |
V6A | 7 | 2 | 5.2 | 3.6 | 1.7 | 47.0 |
V6A | 7 | 3 | 5.2 | 3.6 | 1.2 | 32.9 |
V6A | 7 | 4 | 7.0 | 2.7 | 1.0 | 37.2 |
MG-1 | 1 | 2 | 7.6 | 31.1 | 39.9 | 128.1 |
MG-1 | 1 | 3 | 6.4 | 36.9 | 33.3 | 90.0 |
MG-1 | 1 | 4 | 5.8 | 40.8 | 29.3 | 71.8 |
MG-1 | 3 | 2 | 7.6 | 10.4 | 11.3 | 108.9 |
MG-1 | 3 | 3 | 7.0 | 11.3 | 6.3 | 56.2 |
MG-1 | 3 | 4 | 5.8 | 13.6 | 8.9 | 65.6 |
MG-1 | 5 | 2 | 6.4 | 7.4 | 6.5 | 87.8 |
MG-1 | 5 | 3 | 7.0 | 6.8 | 18.7 | 276.8 |
MG-1 | 5 | 4 | 4.6 | 10.3 | 5.8 | 55.9 |
MG-1 | 7 | 2 | 7.6 | 4.4 | 4.9 | 110.5 |
MG-1 | 7 | 3 | 5.8 | 5.8 | 5.5 | 95.1 |
MG-1 | 7 | 4 | 5.8 | 5.8 | 3.6 | 62.2 |
Ground Speed (m/s) | |||||
---|---|---|---|---|---|
Application Height (m) | 1 | 3 | 5 | 7 | ANOVA Statistics |
Dv0.1 | |||||
2 | 163 b | 164 b | 147 b | 137 b | Height: F = 2.40; P = 0.09; df = 2, 188 |
3 | 149 b | 136 b | 265 a | 157 b | Speed: F = 4.33; P = 0.005; df = 3, 188 |
4 | 155 b | 137 b | 172 a,b | 133 b | Height × Speed: F = 2.77; P = 0.01; df = 6, 188 |
Dv0.5 | |||||
2 | 296 a,b | 281 a,b | 244 a,b | 220 b | Height: F = 1.53; P = 0.22 |
3 | 270 a,b | 223 b | 335 a | 254 a,b | Speed: F = 4.98; P = 0.0024 |
4 | 270 a,b | 224 b | 268 a,b | 220 b | Height × Speed: F = 2.76; P = 0.01 |
Dv0.9 | |||||
2 | 434 a | 379 a,b,c,d | 362 a,b,c,d | 315 c,d | Height: F = 1.60; P = 0.22 |
3 | 409 a,b | 318 b,c,d | 424 a,b,c | 351 a,b,c,d | Speed: F = 13.52; P < 0.0001 |
4 | 420 a,b | 315 b,c,d | 367 a,b,c,d | 296 d | Height × Speed: F = 1.85; P = 0.09 |
Coverage (%) | |||||
2 | 10.67 a | 3.07 b,c,d | 1.84 d | 1.46 d | Height: F = 2.30; P = 0.10 |
3 | 9.02 a,b,c | 1.81 c,d | 11.10 a,b | 1.55 d | Speed: F = 14.49; P < 0.0001 |
4 | 8.18 a,b,c,d | 2.58 c,d | 1.60 c,d | 1.02 d | Height × Speed: F = 2.62; P = 0.02 |
Spray Rate (L/ha) | |||||
2 | 39.87 a | 11.29 b,c | 6.49 c | 4.91 c | Height: F = 1.04; P = 0.36 |
3 | 33.25 a | 6.33 c | 18.70 a,b,c | 5.54 c | Speed: F = 29.11; P < 0.0001 |
4 | 29.26 a,b | 8.91 b,c | 5.75 c | 3.62 c | Height × Speed: F = 1.07; P = 0.38 |
Ground Speed (m/s) | |||||
---|---|---|---|---|---|
Application Height (m) | 1 | 3 | 5 | 7 | ANOVA Statistics |
Dv0.1 | |||||
2 | 130 a | 124 a,b,c | 124 a,b,c | 122 a,b,c | Height: F = 11.76; P < 0.0001; df = 2, 180 |
3 | 113 a,b,c | 104 c | 108 b,c | 110 a,b,c | Speed: F = 1.49; P = 0.22; df = 3, 180 |
4 | 107 b,c | 134 a,b | 117 a,b,c | 103 c | Height × Speed: F = 2.79; P = 0.01; df = 6, 180 |
Dv0.5 | |||||
2 | 225 a | 207 a,b | 197 a,b,c | 195 a,b,c,d | Height: F = 28.51; P < 0.0001 |
3 | 191 b,c,d,e | 172 c,d,e | 166 d,e | 165 d,e | Speed: F = 6.58; P = 0.0003 |
4 | 170 c,d,e | 197 a,b,c,d,e | 172 c,d,e | 164 e | Height × Speed: F = 2.04; P = 0.06 |
Dv0.9 | |||||
2 | 330 a | 296 a,b | 266 b,c,d | 281 b,c | Height: F = 24.60; P < 0.0001 |
3 | 287 a,b | 251 b,c,d,e | 239 c,d,e | 228 d,e | Speed: F = 17.05; P < 0.0001 |
4 | 260 b,c,d,e | 278 a,b,c,d | 233 c,d,e | 220 e | Height × Speed: F = 1.60; P = 0.15 |
Coverage (%) | |||||
2 | 4.36 a | 1.94 b | 1.67 b | 0.54 b | Height: F = 7.33; P = 0.0009 |
3 | 4.71 a | 1.64 b | 0.75 b | 0.41 b | Speed: F = 31.73; P < 0.0001 |
4 | 2.05 b | 0.63 b | 0.52 b | 0.36 b | Height × Speed: F = 2.15; P = 0.05 |
Spray Rate (L/ha) | |||||
2 | 14.88 a | 6.40 b | 5.34 b | 1.70 b | Height: F = 7.61; P = 0.0007 |
3 | 14.93 a | 4.69 b | 2.15 b | 1.19 b | Speed: F = 30.41; P < 0.0001 |
4 | 6.36 b | 2.01 b | 1.48 b | 1.0 b | Height × Speed: F = 2.07; P = 0.06 |
Droplet Spectra Parameter | Nozzle | ANOVA Statistics | |
---|---|---|---|
XR110-01 | CR800-05 | All with df = 3, 188 | |
Dv0.1 | 72.7 1,a | 54.1 b | F = 935.4; P < 0.0001 |
Dv0.5 | 161.4 a | 112.7 b | F = 26447; P < 0.0001 |
Dv0.9 | 286.9 a | 190.1 b | F = 2248.2; P < 0.0001 |
Vol < 100 µm | 20.6 b | 40.6 a | F = 7216.3; P = 0.0003 |
Vol < 200 µm | 66.9 b | 92.4 a | F = 19115.3; P < 0.0001 |
Relative Span | 1.3 a | 1.2 b | F = 59.5; P = 0.0015 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, D.E.; Woldt, W.E.; Latheef, M.A. Effect of Application Height and Ground Speed on Spray Pattern and Droplet Spectra from Remotely Piloted Aerial Application Systems. Drones 2019, 3, 83. https://doi.org/10.3390/drones3040083
Martin DE, Woldt WE, Latheef MA. Effect of Application Height and Ground Speed on Spray Pattern and Droplet Spectra from Remotely Piloted Aerial Application Systems. Drones. 2019; 3(4):83. https://doi.org/10.3390/drones3040083
Chicago/Turabian StyleMartin, Daniel E., Wayne E. Woldt, and Mohamed A. Latheef. 2019. "Effect of Application Height and Ground Speed on Spray Pattern and Droplet Spectra from Remotely Piloted Aerial Application Systems" Drones 3, no. 4: 83. https://doi.org/10.3390/drones3040083
APA StyleMartin, D. E., Woldt, W. E., & Latheef, M. A. (2019). Effect of Application Height and Ground Speed on Spray Pattern and Droplet Spectra from Remotely Piloted Aerial Application Systems. Drones, 3(4), 83. https://doi.org/10.3390/drones3040083