An Approach for Route Optimization in Applications of Precision Agriculture Using UAVs
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Specifications of UAV
3.2. Algorithm
- ❏
- Spectral images were acquired from UAVs used to assess the stressed region in the agricultural field.
- ❏
- VegNet Software was developed to locate stressed areas in the agricultural field using spectral indices (refer to [33]). These stressed regions may have been affected by water stress, nutrient deficiency, disease or pest damage, and could be assessed using a combination of spectral indices discussed in our previous article [33].
- ❏
- Individual stress regions were separated from each other using the flood filling method, and their centroid was calculated.
- ❏
- Each stressed region’s boundary was delineated using mathematical morphological operations and was then transformed into a convex region using the Graham scan convex hull algorithm.
- ❏
- Using the Voronoi diagram and Voronoi iteration process, the optimal spray points were calculated for each stressed region.
- ❏
- Thereafter, the shortest path from the starting point traversing through each stressed region and its spray points was found using a TSP-based route planning solution.
3.3. Graham Scan Algorithm
Algorithm 1. Function GrahamScanAlgorithm(points) |
points = list of points stack = EmptyStack() P0 = lowest y-coordinate and leftmost point sort points by polar angle with P0, if several points have the same polar angle then only keep the farthest for point in points: while count stack > 1 and ccw(next_to_top(stack), top(stack), point) < 0: stack.pop() stack.push(point) return stack End |
Algorithm 2. Function find_optimum_points(convex_region, spray_radius) |
Number of points (N) = floor(area of convex region/pi* spray_radius * spray_radius) while True: Points (P) = Find N random points inside the convex region Points (P), max_radius = optimum_location_algorithm(convex_region, points, spray_radius) If ((area_covered_by_points(convex_region, spray_radius) > 97%) and (max_radius =< spray_radius)) return Points (P) Else: Number of points (N) = (N) + 1 End |
3.4. Voronoi Diagram
- (i)
- each region contains a member of P;
- (ii)
- the region containing point Pi P is denoted by vor(pi);
- (iii)
- for any arbitrary point q inside a Voronoi region, i.e., q vor(qi), (pi, q) δ(pj, q) <= for all pj ϵ P. Here, δ(p,q) denotes the Euclidean distance of the pair of points.
3.5. Voronoi Iteration Algorithm or Lloyd’s Algorithm
- The Voronoi diagram of the k sites is computed.
- Each cell of the Voronoi diagram is integrated and the centroid is computed.
- Each site is then moved to the centroid of its Voronoi cell.
Algorithm 3. Function optimum_location_algorithm(convex_region, points, spray_radius) |
set of pointsinside the convex polygon. iter_count = 0 (maximum radius) = 0 while iter_count < 40 and > spray_radius Find the voronoi diagram for the points P Compute the circumscribing circle or each be the radius of Move to the center of and assign range o to it iter_count += 1 return Points (P), (maximum radius) End |
4. Results and Discussion
5. Challenges
6. Future Work
7. Conclusions and Recommendations
- -
- Employ a combination of spectral indices or thermal indices to assess the stress regions in terms of soil moisture, nutrient deficiency and disease condition.
- -
- Employ any techniques or methods to assess the stressed regions which employ accurate methods and applications for the above.
- -
- Utilize route planning and an optimal path that can be used in any field shape and size.
- -
- Implement an optimal path and route for other agricultural applications, such as pesticides and insecticides.
- -
- Implement these techniques while sowing the seeds, effectively and in proper rows.
- -
- Use advanced techniques of calculating an optimal path and route during harvesting to manage large landholdings to make it cost effective and time-saving.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. Sustainable Development Website—United Nations. Food Security and Nutrition and Sustainable Agriculture. 2019. Available online: https://sustainabledevelopment.un.org/topics/foodagriculture (accessed on 13 March 2019).
- United Nations Population. Global Issues—Population Website—United Nations. 2019. Available online: https://www.un.org/en/sections/issues-depth/population/ (accessed on 13 March 2019).
- Bruinsma, J. The resource outlook to 2050: By how much do land, water and crop yields need to increase by 2050. Expert Meet. How Feed World 2009, 2050, 24–26. Available online: http://www.fao.org/3/a-ak971e.pdf (accessed on 20 February 2020).
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- Goodland, R. The concept of environmental sustainability. Ann. Rev. Ecol. Syst. 1995, 26, 1–24. [Google Scholar] [CrossRef]
- WHO. Ecosystems and Human Well-Being, Health Synthesis. 2005. Available online: http://www.bioquest.org/wp-content/blogs.dir/files/2009/06/ecosystems-and-health.pdf (accessed on 20 August 2019).
- Lamine, S.; Petropoulos, G.P.; Brewer, P.A.; Srivastava, P.K.; Bachari, N.E.; Manevski, K.; Kalaitzidis, C.; Macklin, M.G. Heavy Metal Soil Contamination Detection Using Combined Geochemistry and Field Spectroradiometry in the United Kingdom. Sensors 2019, 19, 762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, L.; Pandey, P.C.; Nathawat, M. Assessment of land consumption rate with urban dynamics change using geospatial techniques. J. Land Use Sci. 2012, 7, 135–148. [Google Scholar] [CrossRef]
- Pandey, P.C.; Mandal, V.; Katiyar, S.; Kumar, P.; Tomar, V.; Patairiya, S.; Ravisankar, N.; Gangwar, B. Geospatial Approach to Assess the Impact of Nutrients on Rice Equivalent Yield Using MODIS Sensors’-Based MOD13Q1-NDVI Data. IEEE Sens. J. 2015, 15, 6108–6115. [Google Scholar] [CrossRef]
- Mondal, P.; Basu, M. Adoption of precision agriculture technologies in India and in some developing countries: Scope, present status and strategies. Prog. Nat. Sci. 2009, 19, 659–666. [Google Scholar] [CrossRef]
- Tey, Y.S.; Brindal, M. Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precis. Agric. 2012, 13, 713–730. [Google Scholar] [CrossRef]
- Thomas, D.E.; Weyerhaeuser, H.; Saipathong, P.; Onpraphai, T. Negotiated land use patterns to meet local and societal needs. In Proceedings of the Cultures and Biodiversity Congress 2000, Yunnan, China, 20–30 July 2000; Yunnan Science and Technology Press: Yunnan, China, 2000; pp. 414–433. Available online: http://old.worldagroforestry.org/downloads/Publications/PDFS/PP00160.pdf (accessed on 15 March 2020).
- Mogili, U.R.; Deepak, B.B.V.L. Review on Application of Drone Systems in Precision Agriculture. Procedia Comput. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]
- Somayeh Tohidyan, F.; Rezaei-Moghaddam, K. Impacts of the precision agricultural technologies in Iran: An analysis experts’ perception & their determinants. Inf. Process. Agric. 2018, 5, 173–184. [Google Scholar] [CrossRef]
- Whelan, B.M.; McBratney, A.B.; Boydell, B.C. The Impact of Precision Agriculture. In Proceedings of the ABARE Outlook Conference, the Future of Cropping in NW NSW, Moree, UK, 15 July 1997; p. 5. [Google Scholar]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Schnug, E.; Panten, K.; Haneklaus, S. Sampling and nutrient recommendations—The future. Commun. Soil Sci. Plant Anal. 1998, 29, 1455–1462. [Google Scholar] [CrossRef]
- Singh, P.; Pandey, P.C.; Petropoulos, G.P.; Pavlides, A.; Srivastava, P.K.; Koutsias, N.; Kwal Deng, K.A.; Yangson, B. Hyperspectral remote sensing in precision agriculture: Present status, challenges, and future trends. In Hyperspectral Remote Sensing: Theory and Applications; Pandey, P.C., Srivastava, P.K., Baltzer, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 8; pp. 121–146. [Google Scholar] [CrossRef]
- Bagheri, N.; Ahmadi, H.; Alavipanah, S.K.; Omid, M. Multispectral remote sensing for site-specific nitrogen fertilizer management. Pesqui. Agropecu. Bras. 2013, 48, 1394–1401. [Google Scholar] [CrossRef] [Green Version]
- Wójtowicz, M.; Wójtowicz, A.; Piekarczyk, J. Application of remote sensing methods in agriculture. Commun. Biometry Crop Sci. 2016, 11, 31–50. [Google Scholar]
- Hruska, R.C.; Mitchell, J.J.; Anderson, M.; Glenn, N.F. Radiometric and Geometric Analysis of Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle. Remote Sens. 2012, 4, 2736–2752. [Google Scholar] [CrossRef] [Green Version]
- Uto, K.; Seki, H.; Saito, G.; Kosugi, Y. Characterization of Rice Paddies by a UAV-Mounted Miniature Hyperspectral Sensor System. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 851–860. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Gonzalez-Dugo, V.; Berni, J.; Jimenez-Berni, J.A. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef]
- Stehr, N.J. Drones: The Newest Technology for Precision Agriculture. Nat. Sci. Educ. 2015, 44, 89–91. [Google Scholar] [CrossRef]
- Von Bueren, S.K.; Burkart, A.; Hueni, A.; Rascher, U.; Tuohy, M.P.; Yule, I.J. Deploying four optical UAV-based sensors over grassland: Challenges and limitations. Biogeosciences 2015, 12, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Gago, J.; Douthe, C.; Coopman, R.; Gallego, P.P.; Ribas-Carbo, M.; Flexas, J.; Escalona, J.; Medrano, H. UAVs challenge to assess water stress for sustainable agriculture. Agric. Water Manag. 2015, 153, 9–19. [Google Scholar] [CrossRef]
- Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Mäkynen, J.; Pesonen, L. Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture. Remote Sens. 2013, 5, 5006–5039. [Google Scholar] [CrossRef] [Green Version]
- Schmale David, G., III; Dingus, B.R.; Reinholtz, C.; Schmale, D.G. Development and application of an autonomous unmanned aerial vehicle for precise aerobiological sampling above agricultural fields. J. Field Robot. 2008, 25, 133–147. [Google Scholar] [CrossRef]
- Cheein, F.A.A.; Carelli, R. Agricultural Robotics: Unmanned Robotic Service Units in Agricultural Tasks. IEEE Ind. Electron. Mag. 2013, 7, 48–58. [Google Scholar] [CrossRef]
- Freeman, P.K.; Freeland, R.S. Agricultural UAVs in the U.S.: Potential, policy, and hype. Remote Sens. Appl. Soc. Environ. 2015, 2, 35–43. [Google Scholar] [CrossRef]
- Nebiker, S.; Annen, A.; Scherrer, M.; Oesch, D. A light-weight multispectral sensor for micro UAV—Opportunities for very high resolution airborne remote sensing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 1193–1199. [Google Scholar]
- Fischer, A. A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters. Remote Sens. Environ. 1994, 48, 220–230. [Google Scholar] [CrossRef]
- Srivastava, K.; Bhutoria, A.J.; Sharma, J.K.; Sinha, A.; Pandey, P.C. UAVs technology for the development of GUI based application for precision agriculture and environmental research. Remote Sens. Appl. Soc. Environ. 2019, 16, 100258. [Google Scholar] [CrossRef]
- Huete, A. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Horler, D.N.H.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.V.; Van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Gonçalves, J.A.; Henriques, R. UAV photogrammetry for topographic monitoring of coastal areas. ISPRS J. Photogramm. Remote Sens. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- Pinto, E.; Santana, P.; Barata, J. On collaborative aerial and surface robots for environmental monitoring of water bodies. In Doctoral Conference on Computing, Electrical and Industrial Systems; Springer: Berlin/Heidelberg, Germany, 2013; pp. 183–191. [Google Scholar]
- Watanabe, Y.; Kawahara, Y. UAV Photogrammetry for Monitoring Changes in River Topography and Vegetation. Procedia Eng. 2016, 154, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-C.; Zhang, G.-S.; Lei, T.-J.; Gong, A.-D. Quick image-processing method of UAV without control points data in earthquake disaster area. Trans. Nonferrous Met. Soc. China 2011, 21, s523–s528. [Google Scholar] [CrossRef]
- Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B.; et al. Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef] [Green Version]
- Muzari, W.; Gatsi, W.; Muvhunzi, S. The Impacts of Technology Adoption on Smallholder Agricultural Productivity in Sub-Saharan Africa: A Review. J. Sustain. Dev. 2012, 5, 69. [Google Scholar] [CrossRef]
- Anderson, K.R. A reevaluation of an efficient algorithm for determining the convex hull of a finite planar set. Inf. Process. Lett. 1978, 7, 53–55. [Google Scholar] [CrossRef]
- Xuemei, L.; Yuyan, D.; Lixing, D. Study on precision agriculture monitoring framework based on WSN. In Proceedings of the 2008 2nd International Conference on Anti-Counterfeiting, Security and Identification, Guiyang, China, 20–23 August 2008. [Google Scholar]
- López-Riquelme, J.; Pavón-Pulido, N.; Navarro-Hellín, H.; Soto-Valles, F.; Torres-Sánchez, R. A software architecture based on FIWARE cloud for Precision Agriculture. Agric. Water Manag. 2017, 183, 123–135. [Google Scholar] [CrossRef]
- Nash, E.; Korduan, P.; Bill, R. Applications of open geospatial web services in precision agriculture: A review. Precis. Agric. 2009, 10, 546–560. [Google Scholar] [CrossRef]
- Hunt, E.R.; Hively, W.D.; Daughtry, C.S.; McCarty, G.W.; Fujikawa, S.J.; Ng, T.L.; Tranchitella, M.; Linden, D.S.; Yoel, D.W. Remote sensing of crop leaf area index using unmanned airborne vehicles. In Proceedings of the Pecora 17—The Future of Land Imaging, Going Operational, Denver, CO, USA, 18–20 November 2008. [Google Scholar]
- Burema, H.; Filin, A. Aerial Farm Robot System for Crop Dusting, Planting, Fertilizing and Other Field Jobs. U.S. Patent No. 9,382,003, 5 July 2016. [Google Scholar]
- Qin, W.-C.; Qiu, B.-J.; Xue, X.; Chen, C.; Xu, Z.-F.; Zhou, Q. Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers. Crop. Prot. 2016, 85, 79–88. [Google Scholar] [CrossRef]
- Zhou, L.P.; He, Y. Simulation and optimization of multi spray factors in UAV. In Proceedings of the 2016 ASABE Annual International Meeting, Lake Buena Vista, FL, USA, 17–20 July 2016; American Society of Agricultural and Biological Engineers: Saint Joseph, MI, USA, 2016. [Google Scholar] [CrossRef]
- Yao, L.; Jiang, Y.; Zhiyao, Z.; Shuaishuai, Y.; Quan, Q. A pesticide spraying mission assignment performed by multi-quadcopters and its simulation platform establishment. In Proceedings of the 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Nanjing, China, 12–14 August 2016. [Google Scholar]
- Stark, B.; Rider, S.; Chen, Y. Optimal pest management by networked unmanned cropdusters in precision agriculture: A cyber-physical system approach. IFAC Proc. Vol. 2013, 46, 296–302. [Google Scholar] [CrossRef]
- Castaldi, F.; Pelosi, F.; Pascucci, S.; Casa, R. Assessing the potential of images from unmanned aerial vehicles (UAV) to support herbicide patch spraying in maize. Precis. Agric. 2016, 18, 76–94. [Google Scholar] [CrossRef]
- Campos, J.; Llop, J.; Gallart, M.; García-Ruiz, F.; Gras, A.; Salcedo, R.; Gil, E. Development of canopy vigour maps using UAV for site-specific management during vineyard spraying process. Precis. Agric. 2019, 20, 1136–1156. [Google Scholar] [CrossRef] [Green Version]
- Norbert, D. Route Planning System for Agricultural Work Vehicles. U.S. Patent 6,128,574, 3 October 2000. Available online: https://patentimages.storage.googleapis.com/86/bd/48/076423c308fe7b/US6128574.pdf (accessed on 25 June 2020).
- Rodias, E.; Berruto, R.; Busato, P.; Bochtis, D.; Sørensen, C.G.; Zhou, K. Energy Savings from Optimised In-Field Route Planning for Agricultural Machinery. Sustainability 2017, 9, 1956. [Google Scholar] [CrossRef] [Green Version]
- Cabreira, T.M.; Brisolara, L.B.; Ferreira, P.R., Jr. Survey on Coverage Path Planning with Unmanned Aerial Vehicles. Drones 2019, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Galceran, E.; Carreras, M. A survey on coverage path planning for robotics. Robot. Auton. Syst. 2013, 61, 1258–1276. [Google Scholar] [CrossRef] [Green Version]
- Nam, L.H.; Huang, L.; Li, X.J.; Xu, J.F. An approach for coverage path planning for UAVs. In Proceedings of the 2016 IEEE 14th International Workshop on Advanced Motion Control (AMC), Auckland, New Zealand, 22–24 April 2016; pp. 411–416. [Google Scholar] [CrossRef] [Green Version]
- Tokekar, P.; Hook, J.V.; Mulla, D.; Isler, V. Sensor Planning for a Symbiotic UAV and UGV System for Precision Agriculture. IEEE Trans. Robot. 2016, 32, 1498–1511. [Google Scholar] [CrossRef]
- Tarot. Tarot 4008 Martin Long Flight Time BLDC Motor Specifications. 2019. Available online: http://www.tarotrc.com/Product/Detail.aspx?Lang¼en&Id¼9fc38c24-b74d-469d-b568-3d5ea644874a (accessed on 17 December 2019).
- Planner, Mission. Ardupilot—Mission Planner Documentation. 2019. Available online: http://ardupilot.org/planner/index.html (accessed on 5 December 2018).
- Alsalam, B.H.Y.; Morton, K.; Campbell, D.; Gonzalez, F. Autonomous UAV with vision based on-board decision making for remote sensing and precision agriculture. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2017; pp. 1–12. [Google Scholar]
- Pixhawk. Pixhawk-4 User Guide and Documentation-PixHawk. 2019. Available online: https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4.html (accessed on 23 March 2019).
- FlySky. FlySky FS-i6S RC Transmitter with Receiver. 2019. Available online: https://www.flysky-cn.com/fsi6s (accessed on 10 November 2019).
- U-Blox. U-Blox Neo-7M GPS Module Specifications and Documentation. 2019. Available online: https://www.u-blox.com/en/product/neo-7-series (accessed on 27 January 2019).
- Benewafke. Benewake TF02 LiDAR (Mid-Range Distance Sensor) User Guide and Documentation—Benewake. 2019. Available online: http://en.benewake.com/product/detail/5c345c9de5b3a844c4723299 (accessed on 15 February 2019).
- MicaSense. MicaSense RedEdge—MX Spectral Camera Specifications. 2019. Available online: https://www.micasense.com/rededge-mx (accessed on 15 November 2019).
- Walsh, O.S.; Shafian, S.; Marshall, J.M.; Jackson, C.; McClintick-Chess, J.R.; Blanscet, S.M.; Swoboda, K.; Thompson, C.; Belmont, K.M.; Walsh, W.L. Assessment of UAV Based Vegetation Indices for Nitrogen Concentration Estimation in Spring Wheat. Adv. Remote Sens. 2018, 7, 71–90. [Google Scholar] [CrossRef] [Green Version]
- Pavlidis, T. Filling algorithms for raster graphics. Comput. Graph. Image Process. 1979, 10, 126–141. [Google Scholar] [CrossRef]
- James, D.F.; Van Dam, A. Fundamentals of Interactive Computer Graphics; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1982; Volume 2, ISBN 0-201-14468-9. [Google Scholar]
- Little, J.D.C.; Murty, K.G.; Sweeney, D.W.; Karel, C. An Algorithm for the Traveling Salesman Problem. Oper. Res. 1963, 11, 972–989. [Google Scholar] [CrossRef]
- Croes, G.A. A Method for Solving Traveling-Salesman Problems. Oper. Res. 1958, 6, 791–812. [Google Scholar] [CrossRef]
- Chisman, J.A. The clustered traveling salesman problem. Comput. Oper. Res. 1975, 2, 115–119. [Google Scholar] [CrossRef]
- Serra, J. Image Analysis and Mathematical Morphology; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Soille, P. Morphological Image Analysis, Principles and Applications; Academic Press, Inc.: Orlando, FL, USA, 1999; ISBN 0126372403. [Google Scholar]
- Graham, R.L. An efficient algorith for determining the convex hull of a finite planar set. Inf. Process. Lett. 1972, 1, 132–133. [Google Scholar] [CrossRef]
- Jarvis, R. On the identification of the convex hull of a finite set of points in the plane. Inf. Process. Lett. 1973, 2, 18–21. [Google Scholar] [CrossRef]
- Das, G.K.; Das, S.; Nandy, S.C.; Sinha, B.P. Efficient algorithm for placing a given number of base stations to cover a convex region. J. Parallel Distrib. Comput. 2006, 66, 1353–1358. [Google Scholar] [CrossRef]
- De Berg, M.; Van Kreveld, M.; Overmars, M.; Cheong, O. Computational Geometry; Springer: Berlin/Heidelberg, Germany, 1997; pp. 1–17. [Google Scholar] [CrossRef]
- Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef]
- Megiddo, N. Linear-time algorithms for linear programming in R3 and related problems. SIAM J. Comput. 1983, 12, 759–776. Available online: http://theory.stanford.edu/~megiddo/pdf/lp3.pdf (accessed on 5 August 2020). [CrossRef]
- Mission Planning. Mission Planning—Copter Documentation. 2019. Available online: www.ardupilot.org/copter/docs/common-mission-planning.html (accessed on 25 June 2019).
- Spekken, M.; De Bruin, S. Optimized routing on agricultural fields by minimizing maneuvering and servicing time. Precis. Agric. 2012, 14, 224–244. [Google Scholar] [CrossRef]
Details/Parts of Drone | Items | Specifications |
---|---|---|
Drone frame | Frame | Carbon fiber |
Type | Quadcopter | |
Drone motor | Type | Brushless direct current motor (BLDC) |
Typical endurance | 40 to 60 min | |
Weight | 85 g | |
Speed | 330 KV | |
Digital spectral camera | Camera make | MicaSense Red Edge™ 3 Multispectral Camera |
Spectral bands | Blue, green, red, red edge, near-IR | |
Megapixel | 3.6 MP | |
Capture rate | 1 capture per second | |
Storage | SD card | |
Battery | Technology | Lithium-ion batteries |
Max battery capacity | 10,000 mAh | |
RC controller | Make | FS-i6S transmitter |
No. of channels | 10 | |
Frequency range | 2.4055–2.475 GHz | |
Modulation system | GFSK | |
2.4G mode | AFHDS 2A | |
Light detection and ranging (LIDAR) | Make | TF02-Pro 40m IP65 LiDAR |
Operating range | 0.1–40 m | |
Weight | 50 g | |
Frequency | 1–1000 Hz | |
GPS | Oscillator | Crystal |
Technology | GPS, GLONASS | |
Memory | ROM | |
Navigation update rate | up to 10 Hz | |
PX4 controller | Main chip | STM32F427 |
CPU | 180 MHz ARM® Cortex® M4 | |
RAM | 256 KB SRAM | |
Connectivity | 1× I2C, 1× CAN, 1× ADC, 4× UART | |
Sensors | Gyroscope, accelerometer, 3-axis gyroscope, barometer |
Number of Spray Points | Percentage of Area of Stressed Region Not Covered by Spray Region | Radius of Maximum Circumcircle of a Voronoi Region at the Last Iteration |
---|---|---|
5 | 24.24% | 0.48712 m |
6 | 9.14% | 0.51512 m |
7 | 5.92% | 0.45808 m |
8 | 0.28% | 0.40368 m |
Optimization Steps | Radius (in Meters) | Optimization Steps | Radius (in Meters) | Optimization Steps | Radius (in Meters) | Optimization Steps | Radius (in Meters) |
---|---|---|---|---|---|---|---|
1 | 0.5572 | 11 | 0.4521 | 21 | 0.4212 | 31 | 0.4080 |
2 | 0.49 | 12 | 0.4470 | 22 | 0.4191 | 32 | 5.092 0.4073 |
3 | 0.4636 | 13 | 0.4429 | 23 | 0.4172 | 33 | 0.4066 |
4 | 0.4607 | 14 | 0.4394 | 24 | 0.4156 | 34 | 0.4060 |
5 | 0.4628 | 15 | 0.4364 | 25 | 0.4140 | 35 | 0.4056 |
6 | 0.4591 | 16 | 0.4336 | 26 | 0.4128 | 36 | 0.4052 |
7 | 0.4584 | 17 | 0.4309 | 27 | 0.4116 | 37 | 0.4048 |
8 | 0.4576 | 18 | 0.4286 | 28 | 0.4105 | 38 | 0.4044 |
9 | 0.4564 | 19 | 0.4260 | 29 | 0.4096 | 39 | 0.4041 |
10 | 0.4547 | 20 | 0.4234 | 30 | 0.4088 | 40 | 0.4036 |
Region | Percentage of Area Not Covered | Percentage of Area with Overlap |
---|---|---|
Region I | 0.04% | 25.69% |
Region II | 2.12% | 12.96% |
Region III | 0% | 0% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, K.; Pandey, P.C.; Sharma, J.K. An Approach for Route Optimization in Applications of Precision Agriculture Using UAVs. Drones 2020, 4, 58. https://doi.org/10.3390/drones4030058
Srivastava K, Pandey PC, Sharma JK. An Approach for Route Optimization in Applications of Precision Agriculture Using UAVs. Drones. 2020; 4(3):58. https://doi.org/10.3390/drones4030058
Chicago/Turabian StyleSrivastava, Kshitij, Prem Chandra Pandey, and Jyoti K. Sharma. 2020. "An Approach for Route Optimization in Applications of Precision Agriculture Using UAVs" Drones 4, no. 3: 58. https://doi.org/10.3390/drones4030058
APA StyleSrivastava, K., Pandey, P. C., & Sharma, J. K. (2020). An Approach for Route Optimization in Applications of Precision Agriculture Using UAVs. Drones, 4(3), 58. https://doi.org/10.3390/drones4030058