Wireless Communications for Data Security: Efficiency Assessment of Cybersecurity Industry—A Promising Application for UAVs
Abstract
:1. Introduction
2. Literature Review and Research Procedure
2.1. DEA Malmquist Model
2.2. DEA Window Analysis Model
2.3. Research Procedure
3. Research Results and Discussion
3.1. Selection of Input and Output Variables
3.2. Data Envelopment Analysis (DEA)-Malmquist Model
- DEA-Malmquist Model
- Definitions of each parameter:
3.3. DEA WINDOW Analysis Model
4. Empirical Results
4.1. Data Used Performance Analysis
4.2. Pearson Correlation
4.3. Results of the Malmquist Model
4.3.1. Technical Efficiency Change (Catch up Index—CA)
4.3.2. Technological Change (Frontier Shift Index—FR)
4.3.3. Total Factor Productivity (Malmquist Index)
4.4. DEA Window Analysis Results
4.4.1. Relative Efficiency Scores
4.4.2. DMUs Efficiency Categories
4.5. Relating Malmquist Productivity Index and Window Analysis Relative Efficiency
5. Conclusions
5.1. Remarkable Conclusions and Findings
5.2. Main Limitation of the Approach
5.3. Future Research Suggestion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acharya, S.; Dvorkin, Y.; Karri, R. Causative Cyberattacks on Online Learning-Based Automated Demand Response Systems. IEEE Trans. Smart Grid 2021, 12, 3548–3559. [Google Scholar] [CrossRef]
- Alazab, M.; Priya, R.M.S.; Parimala, M.; Maddikunta, P.K.R.; Gadekallu, T.R.; Pham, Q.V. Federated Learning for Cybersecurity: Concepts, Challenges, and Future Directions. IEEE Trans. Ind. Inform. 2022, 18, 3501–3509. [Google Scholar] [CrossRef]
- Bin Arfaj, B.A.; Mishra, S.; AlShehri, M. Efficacy of Unconventional Penetration Testing Practices. Intell. Autom. Soft Comput. 2022, 31, 223–239. [Google Scholar] [CrossRef]
- Kara, I.; Aydos, M. The rise of ransomware: Forensic analysis for windows based ransomware attacks. Expert Syst. Appl. 2022, 190, 116198. [Google Scholar] [CrossRef]
- Alqarni, A.A.; Alsharif, N.; Khan, N.A.; Georgieva, L.; Pardade, E.; Alzahrani, M.Y. MNN-XSS: Modular Neural Network Based Approach for XSS Attack Detection. CMC-Comput. Mater. Contin. 2022, 70, 4075–4085. [Google Scholar] [CrossRef]
- Khanduzi, R.; Peyghami, M.R.; Sangaiah, A.K. Data envelopment analysis and interdiction median problem with fortification for enabling IoT technologies to relieve potential attacks. Future Gener. Comput. Syst. 2018, 79, 928–940. [Google Scholar] [CrossRef]
- Li, G.D. Spatiotemporal Dynamics of Ecological Total-Factor Energy Efficiency and Their Drivers in China at the Prefecture Level. Int. J. Environ. Res. Public Health 2019, 16, 3480. [Google Scholar] [CrossRef] [Green Version]
- Li, M.J.; Wang, J. Spatial-Temporal Distribution Characteristics and Driving Mechanism of Green Total Factor Productivity in China’s Logistics Industry. Pol. J. Environ. Stud. 2021, 30, 201–213. [Google Scholar] [CrossRef]
- Burg, A.; Chattopadhyay, A.; Lam, K.-Y. Wireless communication and security issues for cyber–physical systems and the Internet-of-Things. Proc. IEEE 2017, 106, 38–60. [Google Scholar] [CrossRef]
- Kagawa, T.; Ono, F.; Shan, L.; Takizawa, K.; Miura, R.; Li, H.-B.; Kojima, F.; Kato, S. A Study on Latency-Guaranteed Multi-Hop Wireless Communication System for Control of Robots and Drones. In Proceedings of the 2017 20th International Symposium on Wireless Personal Multimedia Communications (WPMC), Yogyakarta, Indonesia, 17–20 December 2017; pp. 417–421. [Google Scholar]
- Mehta, P.L.; Kumar, A.; Mohammad, B.; Prasad, R. A Technological and Business Perspective on Connected Drones for 6G and Beyond Mobile Wireless Communications. Wirel. Pers. Commun. 2022, 126, 1–20. [Google Scholar] [CrossRef]
- Saad, W.; Bennis, M.; Mozaffari, M.; Lin, X. Wireless Communications and Networking for Unmanned Aerial Vehicles; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Nouacer, R.; Hussein, M.; Espinoza, H.; Ouhammou, Y.; Ladeira, M.; Castiñeira, R.J.M. Microsystems, Towards a framework of key technologies for drones. Microprocess. Microsyst. 2020, 77, 103142. [Google Scholar] [CrossRef]
- Alghassab, M. Analyzing the Impact of Cybersecurity on Monitoring and Control Systems in the Energy Sector. Energies 2022, 15, 218. [Google Scholar] [CrossRef]
- Gan, G.Y.; Lee, H.S.; Liu, J.Y. A DEA Approach Towards to the Evaluation of IoT Applications in Intelligent Ports. J. Mar. Sci. Technol. 2021, 29, 256–265. [Google Scholar] [CrossRef]
- Priyadarshini, I.; Kumar, R.; Sharma, R.; Singh, P.K.; Satapathy, S.C. Identifying cyber insecurities in trustworthy space and energy sector for smart grids. Comput. Electr. Eng. 2021, 93, 107204. [Google Scholar] [CrossRef]
- Yin, S.W.; Gong, Z.W.; Gu, L.; Deng, Y.J.; Niu, Y.J. Driving forces of the efficiency of forest carbon sequestration production: Spatial panel data from the national forest inventory in China. J. Clean. Prod. 2022, 330, 129776. [Google Scholar] [CrossRef]
- Shi, L.Y.; Li, X.Y.; Gao, Z.B.; Duan, P.F.; Liu, N.; Chen, H.L. Worm computing: A blockchain-based resource sharing and cybersecurity framework. J. Netw. Comput. Appl. 2021, 185, 103081. [Google Scholar] [CrossRef]
- Tashtoush, Y.M.; Darweesh, D.A.; Husari, G.; Darwish, O.A.; Darwish, Y.; Issa, L.B.; Ashqar, H.I. Agile Approaches for Cybersecurity Systems, IoT and Intelligent Transportation. IEEE Access 2022, 10, 1360–1375. [Google Scholar] [CrossRef]
- Tsimenidis, S.; Lagkas, T.; Rantos, K. Deep Learning in IoT Intrusion Detection. J. Netw. Syst. Manag. 2022, 30, 1–40. [Google Scholar] [CrossRef]
- Dang, T.-T.; Nguyen, N.-A.-T.; Nguyen, V.-T.-T.; Dang, L.-T. A Two-Stage Multi-Criteria Supplier Selection Model for Sustainable Automotive Supply Chain under Uncertainty. Axioms 2022, 11, 228. [Google Scholar] [CrossRef]
- Chen, K.; Ren, X.T.; Yang, G.L.; Qin, H.B. The other side of the coin: The declining of Chinese social science. Scientometrics 2022, 127, 127–143. [Google Scholar] [CrossRef]
- Li, Y.; Chiu, Y.H.; Liu, Y.B.; Lin, T.Y.; Chang, T.H. The Impact of the Media and Environmental Pollution on the Economy and Health Using a Modified Meta 2-Stage EBM Malmquist Model. Inq. J. Health Care Organ. Provis. Financ. 2020, 57, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.X.; Liu, H.H.; Yang, G.L.; Pan, J.F. Productivity assessment of the real estate industry in China: A DEA-Malmquist index. Eng. Constr. Arch. Manag. 2021, 52, 146–168. [Google Scholar] [CrossRef]
- Nguyen, V.T.T.; Wang, C.-N.; Yang, F.-C.; Vo, T.M.N. Mathematics, Efficiency Evaluation of Cyber Security Based on EBM-DEA Model. Eurasia Proc. Sci. Technol. Eng. Math. 2022, 17, 38–44. [Google Scholar] [CrossRef]
- Řepková, I.J.P.E. Finance, Efficiency of the Czech banking sector employing the DEA window analysis approach. Procedia Econ. Financ. 2014, 12, 587–596. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.L.; Wang, J.G.; Wang, J.M.; Ding, L.L.; Zhao, M.S.; Wang, Q.W. Investigating the spatiotemporal differences and influencing factors of green water use efficiency of Yangtze River Economic Belt in China. PLoS ONE 2020, 15, e0230963. [Google Scholar] [CrossRef]
- Wu, D.D.; Wang, Y.H.; Qian, W.Y. Efficiency evaluation and dynamic evolution of China’s regional green economy: A method based on the Super-PEBM model and DEA window analysis. J. Clean. Prod. 2020, 264, 121630. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, D.; Li, H. Efficiency measurement and productivity progress of regional green technology innovation in China: A comprehensive analytical framework. Technol. Anal. Strat. Manag. 2021, 34, 1432–1448. [Google Scholar] [CrossRef]
- Wang, C.-N.; Yang, F.-C.; Nguyen, V.T.T.; Nguyen, Q.M.; Huynh, N.T.; Huynh, T.T.J.M. Optimal Design for Compliant Mechanism Flexure Hinges: Bridge-Type. Micromachines 2021, 12, 1304. [Google Scholar] [CrossRef]
- Georgiou, O.; Raza, U. Low power wide area network analysis: Can LoRa scale? IEEE Wirel. Commun. Lett. 2017, 6, 162–165. [Google Scholar] [CrossRef] [Green Version]
- Färe, R.; Grosskopf, S.; Lindgren, B.; Roos, P. Productivity developments in Swedish hospitals: A Malmquist output index approach. In Data Envelopment Analysis: Theory, Methodology, and Applications; Springer: Berlin/Heidelberg, Germany, 1994; pp. 253–272. [Google Scholar]
- Löthgren, M.; Tambour, M. Productivity and customer satisfaction in Swedish pharmacies: A DEA network model. Eur. J. Oper. Res. 1999, 115, 449–458. [Google Scholar] [CrossRef]
- Caves, D.W.; Christensen, L.R.; Diewert, W.E. The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica 1982, 50, 1393–1414. [Google Scholar] [CrossRef]
- Tone, K.; Sahoo, B. Degree of scale economies and congestion: A unified DEA approach. Eur. J. Oper. Res. 2004, 158, 755–772. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.N.; Nguyen, N.A.; Fu, H.P.; Hsu, H.P.; Dang, T.T. Efficiency Assessment of Seaport Terminal Operators Using DEA Malmquist and Epsilon-Based Measure Models. Axioms 2021, 10, 48. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Wei, Q.L.; Huang, Z.M. Cone ratio data envelopment analysis and multi-objective programming. Int. J. Syst. Sci. 1989, 20, 1099–1118. [Google Scholar] [CrossRef]
- Bian, Y.; Yang, F.J.E.P. Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon’s entropy. Energy Policy 2010, 38, 1909–1917. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Chen, D.-H. Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. J. Hazard. Mater. 2009, 165, 664–669. [Google Scholar] [CrossRef]
- Řepková, I.J.P.E. Finance, Banking efficiency determinants in the Czech banking sector. Procedia Econ. Financ. 2015, 23, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Hunjet, D.; Neralić, L.; Wendell, R.E. Evaluation of the dynamic efficiency of Croatian towns using data envelopment analysis. Central Eur. J. Oper. Res. 2015, 23, 675–686. [Google Scholar] [CrossRef]
- Žaja, M.M.; Banker, R.; Fang, S.; Hunjet, D.; Neralić, L.; Wendell, R.E. Efficiency Gains in Croatia’s Electricity Distribution Centers Following Industry Structure Changes. Data Envel. Anal. J. 2017, 3, 119–150. [Google Scholar] [CrossRef]
- Golany, B.; Roll, Y.J.O. An application procedure for DEA. Omega 1989, 17, 237–250. [Google Scholar] [CrossRef]
- Lu, W.-M.; Hung, S.-W.J.C.; Research, O. Exploring the efficiency and effectiveness in global e-retailing companies. Comput. Oper. Res. 2011, 38, 1351–1360. [Google Scholar] [CrossRef]
- Tao, L.; Liu, X.; Chen, Y.J.Q. Quantity, Online banking performance evaluation using data envelopment analysis and axiomatic fuzzy set clustering. Qual. Quant. 2013, 47, 1259–1273. [Google Scholar] [CrossRef]
- Yang, Z.; Shi, Y.; Wang, B.; Yan, H. Website quality and profitability evaluation in ecommerce firms using two-stage DEA model. Procedia Comput. Sci. 2014, 30, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.-B. Performance modeling of mobile phone providers: A DEA-ANN combined approach. Benchmarking Int. J. 2014, 21, 1120–1144. [Google Scholar] [CrossRef]
- Yang, Z.; Shi, Y.; Yan, H. Applications, Scale, congestion, efficiency and effectiveness in e-commerce firms. Electron. Commer. Res. Appl. 2016, 20, 171–182. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nguyen, N.-A.-T.; Dang, T.-T.; Trinh, T.-T. A decision support model for measuring technological progress and productivity growth: The case of commercial banks in Vietnam. Axioms 2021, 10, 131. [Google Scholar] [CrossRef]
- Aldhyani, T.H.H.; Alkahtani, H. Attacks to Automatous Vehicles: A Deep Learning Algorithm for Cybersecurity. Sensors 2022, 22, 360. [Google Scholar] [CrossRef]
- Fatani, A.; Dahou, A.; Al-qaness, M.A.A.; Lu, S.F.; Elaziz, M.A. Advanced Feature Extraction and Selection Approach Using Deep Learning and Aquila Optimizer for IoT Intrusion Detection System. Sensors 2022, 22, 140. [Google Scholar] [CrossRef]
- Yin, J.; Tang, M.J.; Cao, J.L.; Wang, H.; You, M.S.; Lin, Y.Z. Vulnerability exploitation time prediction: An integrated framework for dynamic imbalanced learning. World Wide Web 2021, 25, 401–423. [Google Scholar] [CrossRef]
- Fan, B.; Li, Y.; Zhang, R.; Fu, Q. Review on the technological development and application of UAV systems. Chin. J. Electron. 2020, 29, 199–207. [Google Scholar] [CrossRef]
- Beke, É.; Bódi, A.; Katalin, T.G.; Kovács, T.; Maros, D.; Gáspár, L. The role of drones in linking industry 4.0 and ITS Ecosystems. In Proceedings of the 2018 IEEE 18th International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary, 21–22 November 2018; pp. 000191–000198. [Google Scholar]
- Chamola, V.; Kotesh, P.; Agarwal, A.; Gupta, N.; Guizani, M. A comprehensive review of unmanned aerial vehicle attacks and neutralization techniques. Ad Hoc Netw. 2021, 111, 102324. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Wang, Y.; Xuan, H.; Nguyen, T.V.T. Management, Efficient road traffic anti-collision warning system based on fuzzy nonlinear programming. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 456–461. [Google Scholar] [CrossRef]
- Chen, C.; Xiang, J.; Ye, Z.; Yan, W.; Wang, S.; Wang, Z.; Chen, P.; Xiao, M.J.D. Deep Learning-Based Energy Optimization for Edge Device in UAV-Aided Communications. Drones 2022, 6, 139. [Google Scholar] [CrossRef]
- Ding, C.; Zheng, Z.J.D. A Reinforcement Learning Approach Based on Automatic Policy Amendment for Multi-AUV Task Allocation in Ocean Current. Drones 2022, 6, 141. [Google Scholar] [CrossRef]
- Kler, R.; Gangurde, R.; Elmirzaev, S.; Hossain, M.S.; Vo, N.V.; Nguyen, T.V.; Kumar, P.N. Society, Optimization of Meat and Poultry Farm Inventory Stock Using Data Analytics for Green Supply Chain Network. Discret. Dyn. Nat. Soc. 2022, 2022, 1–8. [Google Scholar] [CrossRef]
- Savkin, A.V.; Verma, S.C.; Anstee, S.J.D. Optimal navigation of an unmanned surface vehicle and an autonomous underwater vehicle collaborating for reliable acoustic communication with collision avoidance. Drones 2022, 6, 27. [Google Scholar] [CrossRef]
DMU | Company Name | Stock Code |
---|---|---|
U1 | Synopsys, Mountain View, CA, USA | SNPS |
U2 | Palo Alto Networks, Santa Clara, CA, USA | PANW |
U3 | Oracle, Austin, TX, USA | ORCL |
U4 | Microsoft, Redmond, WC, USA | MSFT |
U5 | IBM, Armonk, NY, USA | IBM |
U6 | BlackBerry Ltd., Waterloo, ON, Canada | BB |
U7 | Cisco Systems Inc., San Jose, CA, USA | CSCO |
U8 | CyberArk, Newton, MA, USA | CYBR |
U9 | Fortinet, Sunnyvale, CA, USA | FTNT |
U10 | Juniper Networks, Sunnyvale, CA, USA | JNPR |
Authors [Reference] | Inputs/Criteria | Outputs/Responses | Research Topics | Applied Sectors |
---|---|---|---|---|
Lu et al., 2011 [44] | Operating expenses, Liability, Equity, Employee | Net income, Net sales, Intangible value, Market value | “Exploring the efficiency and effectiveness in global e-retailing companies”. | E-retailing |
Tao et al., 2013 [45] | Equipment Operating cost Employees | Revenue Web metrics | “Online banking performance evaluation using data envelopment analysis and axiomatic fuzzy set clustering” | E-banking |
Yang et al., 2014 [46] | Costs Assets Labors | Revenue Profit | “Website quality and profitability evaluation in e-commerce firms using two-stage DEA model” | E-commerce |
He-Boong Kwon, 2014 [47] | Cost, Asset | Revenue, Operating income | “Performance modeling of mobile phone providers: A DEA-ANN combined approach” | Mobile Devices |
Yang et al., 2016 [48] | Employees Operating expenses Total assets | Revenue Market share | “Efficiency and effectiveness in e-commerce firms” | E-commerce |
Wang et al., 2021 [49] | Assets, Deposit, Operating expense, Liabilities | Loan, Net income | “A Decision Support Model for Measuring Technological Progress and Productivity Growth: The Case of Commercial Banks in Vietnam” | Banking |
Correlation | Degree of Correlation |
---|---|
>0.8 | Very High |
0.6–0.8 | High |
0.4–0.6 | Medium |
0.2–0.4 | Low |
<0.2 | Very low |
Assets | Liabilities | Operating Expenses | Revenue | Gross Profit | ||
---|---|---|---|---|---|---|
2017 | Max | 241,086 | 107631 | 24372 | 79,139 | 36227 |
Min | 502.58 | 148.61 | 199.53 | 261.7 | 219.85 | |
Average | 65,594 | 30,801 | 6708.9 | 18,163 | 10,889 | |
SD | 81,265 | 38,161 | 8659.8 | 25,979 | 14,097 | |
2018 | Max | 258,848 | 106,452 | 23,651 | 79,590 | 36,936 |
Min | 673.62 | 206.85 | 247.45 | 343.2 | 294.74 | |
Average | 65,714 | 33,937 | 6920.6 | 18,957 | 11,537 | |
SD | 83,607 | 40,183 | 8520.2 | 26,193 | 14,302 | |
2019 | Max | 286,556 | 131,201 | 25,857 | 77,147 | 36,488 |
Min | 1405.2 | 781.03 | 309 | 433.9 | 371.28 | |
Average | 67,640 | 38,142 | 7279 | 19,282 | 11,982 | |
SD | 90,056 | 46,119 | 8932.5 | 25,753 | 14,350 | |
2020 | Max | 301,311 | 135,245 | 28,680 | 73,621 | 35,575 |
Min | 1562.4 | 855.06 | 375.85 | 464.43 | 381.86 | |
Average | 70,426 | 42,140 | 7769.4 | 19,044 | 12,112 | |
SD | 93,872 | 50,497 | 9273.9 | 24,435 | 13,915 |
Assets (A) | Liabilities (L) | Operating Expenses (OE) | Revenue (R) | Gross Profit (GP) | ||
---|---|---|---|---|---|---|
2017 | A | 1 | 0.7383 | 0.5247 | 0.4935 | 0.5565 |
L | 0.7383 | 1 | 0.9493 | 0.9328 | 0.9486 | |
OE | 0.5247 | 0.9493 | 1 | 0.984 | 0.9931 | |
R | 0.4935 | 0.9328 | 0.984 | 1 | 0.9621 | |
GP | 0.5565 | 0.9486 | 0.9931 | 0.9621 | 1 | |
2018 | A | 1 | 0.7821 | 0.4982 | 0.4692 | 0.5465 |
L | 0.7821 | 1 | 0.9175 | 0.8944 | 0.9345 | |
OE | 0.4982 | 0.9175 | 1 | 0.9821 | 0.9947 | |
R | 0.4692 | 0.8944 | 0.9821 | 1 | 0.9632 | |
GP | 0.5465 | 0.9345 | 0.9947 | 0.9632 | 1 | |
2019 | A | 1 | 0.8151 | 0.4626 | 0.4746 | 0.5206 |
L | 0.8151 | 1 | 0.8748 | 0.8747 | 0.8802 | |
OE | 0.4626 | 0.8748 | 1 | 0.991 | 0.9844 | |
R | 0.4746 | 0.8747 | 0.991 | 1 | 0.9649 | |
GP | 0.5206 | 0.8802 | 0.9844 | 0.9649 | 1 | |
2020 | A | 1 | 0.8551 | 0.4924 | 0.4918 | 0.5557 |
L | 0.8551 | 1 | 0.842 | 0.8254 | 0.8538 | |
OE | 0.4924 | 0.842 | 1 | 0.9962 | 0.9657 | |
R | 0.4918 | 0.8254 | 0.9962 | 1 | 0.9646 | |
GP | 0.5557 | 0.8538 | 0.9657 | 0.9646 | 1 |
Catchup | Company Name | 2017 => 2018 | 2018 => 2019 | 2019 => 2020 | Average |
---|---|---|---|---|---|
U1 | Synopsys, Mountain View, CA, USA | 0.9673 | 1.3722 | 0.9225 | 1.0873 |
U2 | Palo Alto Networks, Santa Clara, CA, USA | 0.8363 | 1.1374 | 0.8916 | 0.9551 |
U3 | Oracle, Austin, TX, USA | 1.0966 | 1.1686 | 1.2215 | 1.1622 |
U4 | Microsoft, Redmond, WC, USA | 1.3965 | 2.7213 | 0.9708 | 1.6962 |
U5 | IBM, Arkmont, NY, USA | 1.0318 | 0.7599 | 0.9868 | 0.9262 |
U6 | BlackBerry Ltd., Waterloo, ON, Canada | 0.7234 | 1.1676 | 0.8711 | 0.9207 |
U7 | Cisco Systems Inc., San Jose, CA, USA | 1.1558 | 1.26 | 1.0418 | 1.1525 |
U8 | CyberArk, Newton, MA, USA | 1.019 | 0.5431 | 0.9701 | 0.8441 |
U9 | Fortinet, Sunnyvale, CA, USA | 0.9588 | 0.9968 | 1.1405 | 1.032 |
U10 | Juniper Networks, Sunnyvale, CA, USA | 0.8874 | 0.9101 | 0.8871 | 0.8949 |
Average | 1.0073 | 1.2037 | 0.9904 | 1.0671 | |
Max | 1.3965 | 2.7213 | 1.2215 | 1.6962 | |
Min | 0.7234 | 0.5431 | 0.8711 | 0.8441 | |
SD | 0.1857 | 0.5873 | 0.1148 | 0.2465 |
Frontier | Company Name | 2017 => 2018 | 2018 => 2019 | 2019 => 2020 | Average |
---|---|---|---|---|---|
U1 | Synopsys, Mountain View, CA, USA | 0.9956 | 0.8995 | 0.917 | 0.9374 |
U2 | Palo Alto Networks, Santa Clara, CA, USA | 0.9843 | 0.9879 | 0.9556 | 0.9759 |
U3 | Oracle, Austin, TX, USA | 0.9096 | 0.9407 | 0.8672 | 0.9058 |
U4 | Microsoft, Redmond, WC, USA | 0.8376 | 0.7284 | 0.8369 | 0.801 |
U5 | IBM, Armonk, NY, USA | 1.0061 | 0.9666 | 0.8563 | 0.943 |
U6 | BlackBerry Ltd., Waterloo, ON, Canada | 0.9952 | 0.9905 | 0.8946 | 0.9601 |
U7 | Cisco Systems Inc., San Jose, CA, USA | 0.9203 | 0.9717 | 0.9767 | 0.9562 |
U8 | CyberArk, Newton, MA, USA | 0.989 | 1.0342 | 0.9216 | 0.9816 |
U9 | Fortinet, Sunnyvale, CA, USA | 0.9663 | 0.9934 | 0.9942 | 0.9846 |
U10 | Juniper Networks, Sunnyvale, CA, USA | 1.0111 | 1.0119 | 0.9432 | 0.9887 |
Average | 0.9615 | 0.9525 | 0.9163 | 0.9434 | |
Max | 1.0111 | 1.0342 | 0.9942 | 0.9887 | |
Min | 0.8376 | 0.7284 | 0.8369 | 0.801 | |
SD | 0.0556 | 0.0871 | 0.0525 | 0.0562 |
Malmquist | Company Name | 2017 => 2018 | 2018 => 2019 | 2019 => 2020 | Average |
---|---|---|---|---|---|
U1 | Synopsys, Mountain View, CA, USA | 0.963 | 1.2342 | 0.8459 | 1.0144 |
U2 | Palo Alto Networks, Santa Clara, CA, USA | 0.8232 | 1.1237 | 0.852 | 0.933 |
U3 | Oracle, Austin, TX, USA | 0.9974 | 1.0993 | 1.0593 | 1.052 |
U4 | Microsoft, Redmond, WC, USA | 1.1697 | 1.9821 | 0.8124 | 1.3214 |
U5 | IBM, Armonk, NY, USA | 1.0382 | 0.7345 | 0.845 | 0.8725 |
U6 | BlackBerry Ltd., Waterloo, ON, Canada | 0.72 | 1.1564 | 0.7792 | 0.8852 |
U7 | Cisco System Inc., San Jose, CA, USA | 1.0636 | 1.2244 | 1.0176 | 1.1019 |
U8 | CyberArk, Newton, MA, USA | 1.0079 | 0.5617 | 0.894 | 0.8212 |
U9 | Fortinet, Sunnyvale, CA, USA | 0.9265 | 0.9902 | 1.1339 | 1.0168 |
U10 | Juniper Networks, Sunnyvale, CA, USA | 0.8972 | 0.9209 | 0.8367 | 0.885 |
Average | 0.9607 | 1.1028 | 0.9076 | 0.9903 | |
Max | 1.1697 | 1.9821 | 1.1339 | 1.3214 | |
Min | 0.72 | 0.5617 | 0.7792 | 0.8212 | |
SD | 0.1273 | 0.3775 | 0.1192 | 0.1472 |
DMU | Company Name | 2017–2018 | 2018–2019 | 2019–2020 |
---|---|---|---|---|
U1 | Synopsys, Mountain View, CA, USA | 0.9465 | 0.9739 | 0.9729 |
U2 | Palo Alto Networks, Santa Clara, CA, USA | 0.7239 | 0.7288 | 0.6797 |
U3 | Oracle, Austin, TX, USA | 0.6998 | 0.8437 | 0.9274 |
U4 | Microsoft, Redmond, WC, USA | 0.7073 | 0.9414 | 0.9625 |
U5 | IBM, Armonk, NY, USA | 0.9899 | 0.9223 | 0.9336 |
U6 | BlackBerry Ltd, Ontario, Canada | 0.6624 | 0.6068 | 0.5889 |
U7 | Cisco Systems Inc., San Jose, CA, USA | 0.7783 | 0.9380 | 1.0000 |
U8 | CyberArk, Newton, MA, USA | 1.0000 | 0.8735 | 0.6986 |
U9 | Fortinet, Sunnyvale, CA, USA | 0.9883 | 1.0000 | 0.9678 |
U10 | Juniper Networks, Sunnyvale, CA, USA | 1.0000 | 0.9997 | 0.9619 |
Average | 0.8496 | 0.8828 | 0.8693 | |
Max | 1.0000 | 1.0000 | 1.0000 | |
Min | 0.6624 | 0.6068 | 0.5889 |
Efficiency Score Range | Categories |
---|---|
0.9223–1.000 | Highly Efficient |
0.7239–09222 | Moderately Efficient |
0.7238 and below | Least Efficient |
Year Period | Least Efficient | Moderately Efficient | Highly Efficient |
---|---|---|---|
2017–2018 | Microsoft, Redmond, WC, USA Oracle, Austin, TX, USA BlackBerry Ltd., Waterloo, ON, Canada | Synopsys, Mountain View, CA, USA Cisco Systems Inc., San Jose, CA, USA Palo Alto Networks, Santa Clara, CA, USA | CyberArk, Newton, MA, USA Juniper Networks, Sunnyvale, CA, USA IBM, Armonk, NY, USA Fortinet, Sunnyvale, CA, USA |
2018–2019 | Palo Alto Networks, Santa Clara, CA, USA BlackBerry Ltd., Waterloo, ON, Canada | Oracle, Austin, TX, USA CyberArk, Newton, MA, USA | Fortinet, Sunnyvale, CA, USA Juniper Networks, Sunnyvale, CA, USA Synopsys, Mountain View, CA, USA Microsoft, Redmond, WC, USA Cisco Systems Inc., San Jose, CA, USA IBM, Armonk, NY, USA |
2019–2020 | CyberArk, Newton, MA, USA Palo Alto Networks, Santa Clara, CA, USA BlackBerry Ltd., Waterloo, ON, Canada | Fortinet, Sunnyvale, CA, USA Juniper Networks, Sunnyvale, CA, USA Synopsys, Mountain View, CA, USA Microsoft, Redmond, WC, USA Cisco Systems Inc., San Jose, CA, USA IBM, Armonk, NY, USA Oracle, Austin, TX, USA |
DMU | Company Name | Average Efficiency |
---|---|---|
U10 | Juniper Networks, Sunnyvale, CA, USA | 0.9735 |
U9 | Fortinet, Sunnyvale, CA, USA | 0.9693 |
U1 | Synopsys, Mountain View, CA, USA | 0.949 |
U5 | IBM, Armonk, NY, USA | 0.8893 |
U7 | Cisco Systems Inc., San Jose, CA, USA | 0.8574 |
U8 | CyberArk, Newton, MA, USA | 0.8275 |
U4 | Microsoft, Redmond, WC, USA | 0.7486 |
U3 | Oracle, Austin, TX, USA | 0.748 |
U2 | Palo Alto Networks, Santa Clara, CA, USA | 0.6831 |
U6 | BlackBerry Ltd., Waterloo, ON, Canada | 0.6162 |
Highly Efficient and Progressive | Highly Efficient but Regressive |
---|---|
U1—Synopsys, Mountain View, CA, USA; U9—Fortinet, Sunnyvale, CA, USA | U10—Juniper Networks, Sunnyvale, CA, USA |
Moderately Efficient yet Progressive | Moderately Efficient yet Regressive |
U3—Oracle, Austin, TX, USA; U4—Microsoft, Redmond, WC, USA | U5—IBM, Armonk, NY, USA |
Least Efficient, but Progressive | Least Efficient and Regressive |
- | U2—Palo Alto Networks, Santa Clara, CA, USA; U6—BlackBerry Ltd., Waterloo, ON, Canada |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-N.; Yang, F.-C.; Vo, N.T.M.; Nguyen, V.T.T. Wireless Communications for Data Security: Efficiency Assessment of Cybersecurity Industry—A Promising Application for UAVs. Drones 2022, 6, 363. https://doi.org/10.3390/drones6110363
Wang C-N, Yang F-C, Vo NTM, Nguyen VTT. Wireless Communications for Data Security: Efficiency Assessment of Cybersecurity Industry—A Promising Application for UAVs. Drones. 2022; 6(11):363. https://doi.org/10.3390/drones6110363
Chicago/Turabian StyleWang, Chia-Nan, Fu-Chiang Yang, Nhut T. M. Vo, and Van Thanh Tien Nguyen. 2022. "Wireless Communications for Data Security: Efficiency Assessment of Cybersecurity Industry—A Promising Application for UAVs" Drones 6, no. 11: 363. https://doi.org/10.3390/drones6110363
APA StyleWang, C. -N., Yang, F. -C., Vo, N. T. M., & Nguyen, V. T. T. (2022). Wireless Communications for Data Security: Efficiency Assessment of Cybersecurity Industry—A Promising Application for UAVs. Drones, 6(11), 363. https://doi.org/10.3390/drones6110363