Design and Experimental Study on an Innovative UAV-LiDAR Topographic Mapping System for Precision Land Levelling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Equipment
2.2. Acquiring PPK-GNSS Coordinates
2.3. Rectifying LiDAR Distance Measurements Using UAV Attitude Data
2.4. Acquiring 3D Coordinates of Ground Surveying Points
2.5. Generating Topographic Maps Based on Interpolation Models
3. Results and Discussion
3.1. Evaluating the Accuracy of a UAV-LiDAR Topographic Mapping System
3.2. Topographic Maps of Different Interpolation Models
3.3. Evaluating Accuracy of Topographic Maps
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Du, M.; Noguchi, N.; Okamoto, H.; Kobayashi, N. Topographic Mapping of Farmland by Integration of Multiple Sensors on Board Low-Altitude Unmanned Aerial System. Int. J. Comput. Syst. Eng. 2017, 11, 1205–1209. [Google Scholar]
- Hu, L.; Luo, X.; Lin, C.; Yang, W.; Xu, Y.; Li, Q. Development of 1PJ-4.0 Laser Leveler Installed on a Wheeled Tractor for Paddy Field. Trans. Chin. Soc. Agric. Mach. 2014, 45, 146–151. [Google Scholar]
- Rickman, J.F. Manual for Laser Land Levelling; Rice-Wheat Consortium Technical Bulletin Series 5; Rice-Wheat Consortium for Indo Gangetic Plains: New Delhi, India, 2002; Volume 110, p. 24. [Google Scholar]
- Liang, W.; Liu, C.; Xiao, R.; Liu, C. Review of Conceptual and Systematic Progress of Precision Irrigation. Int. J. Agric. Biol. Eng. 2021, 14, 20–31. [Google Scholar] [CrossRef]
- Khalid, A.; Abdalhaleem, H.; ElKamil, T.; Ahmed, G.K.; Rangaswamy, M.; Fahad, A.; Mohamed, E.; Ahmed, A.; Haroon, E. Impacts of Center Pivot Irrigation System Uniformity on Growth of Potato Crop and Residual Soil Nitrogen. Int. J. Agric. Biol. Eng. 2019, 12, 126–131. [Google Scholar]
- Levidow, L.; Zaccaria, D.; Maia, R.; Vivas, E.; Todorovic, M.; Scardigno, A. Improving Water-Efficient Irrigation: Prospects and Difficulties of Innovative Practices. Agric. Water Manag. 2014, 146, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Abbaszadeh, A.; Kheiri, A.; Hamzeh, A. Subsurface Topographic Modeling Using Geospatial and Data Driven Algorithm. ISPRS Int. J. Geo-Inf. 2021, 10, 341. [Google Scholar] [CrossRef]
- Brandolini, P.; Faccini, F.; Paliaga, G.; Piana, P. Man-made Landforms Survey and Mapping of an Urban Historical Center in a Coastal Mediterranean Environment. Geogr. Fis. Dinam. Quat. 2018, 41, 23–34. [Google Scholar]
- Gościewski, D.; Gerus, M. Adjusting the Regular Network of Squares Resolution to the Digital Terrain Model Surface Shape. ISPRS Int. J. Geo-Inf. 2020, 9, 761. [Google Scholar] [CrossRef]
- Raeisi, H.; Shayannejad, M.; Soltani, A.; Arab, M.; Eslamian, S.; Amoushahi, M.; Marani, M.; Ostad, K. A Simple Method for Land Grading Computations and its Comparison with Genetic Algorithm (GA) Method. Int. J. Res. Stud. Agric. Sci. 2017, 3, 26–38. [Google Scholar]
- Johnson, M.; Ouimet, B. Rediscovering the Lost Archaeological Landscape of Southern New England Using Airborne Light Detection and Ranging (LiDAR). J. Archaeol. Sci. 2014, 43, 9–20. [Google Scholar] [CrossRef]
- Stroner, M.; Urban, R.; Seidl, J.; Reindl, T.; Brouček, J. Photogrammetry Using UAV-mounted GNSS RTK: Georeferencing Strategies without GCPs. Remote Sens. 2021, 13, 1336. [Google Scholar] [CrossRef]
- Remondino, F. Heritage Recording and 3D Modeling with Photogrammetry and 3D Scanning. Remote Sens. 2011, 3, 1104–1138. [Google Scholar] [CrossRef] [Green Version]
- Roncella, R.; Bruno, N.; Diotri, F.; Thoeni, K.; Giacomini, A. Photogrammetric Digital Surface Model Reconstruction in Extreme Low-light Environments. Remote Sens. 2021, 13, 1261. [Google Scholar] [CrossRef]
- Ping, H.; Wang, H.; Ma, H.; Du, Y. Mini-Review of Application of IoT Technology in Monitoring Agricultural Products Quality and Safety. Int. J. Agric. Biol. Eng. 2018, 11, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Ham, Y.; Han, K.; Lin, J.; Golparvar, M. Visual Monitoring of Civil Infrastructure Systems via Camera-Equipped Unmanned Aerial Vehicles (UAVs): A Review of Related Works. Vis. Eng. 2016, 4, 1. [Google Scholar] [CrossRef]
- Du, M.; Liu, Y.; Ji, J.; Jin, X.; Zhou, H.; Liu, K. Farmland Topographic Mapping Based on UAV and LiDAR Technology. Trans. Chin. Soc. Agric. Eng. 2020, 36, 60–67. [Google Scholar]
- Yang, J.; Li, X.; Luo, L.; Zhao, L.; Wei, J.; Ma, T. New Supplementary Photography Methods after the Anomalous of Ground Control Points in UAV Structure-from-Motion Photogrammetry. Drones 2022, 6, 105. [Google Scholar] [CrossRef]
- Resop, P.; Hession, C. Terrestrial Laser Scanning for Monitoring Streambank Retreat: Comparison with Traditional Surveying Techniques. J. Hydraul. Eng. 2010, 136, 794–798. [Google Scholar] [CrossRef]
- Keay, S.; Earl, P.; Hay, S.; Kay, s.; Ogden, J.; Strutt, K. The Role of Integrated Geophysical Survey Methods in the Assessment of Archaeological Landscapes: The case of Portus. Archaeol. Prospect. 2009, 16, 154–166. [Google Scholar]
- Guo, Z.; Zheng, J.; Cui, Y. Surveying and Setting-out Based on Two-Point Reference Line with Total Station. Bull. Surv. Mapp. 2004, 8, 22. [Google Scholar]
- Dardanelli, G.; Maltese, A.; Pipitone, C.; Pisciotta, A.; Brutto, M. NRTK, PPP or Static, That Is the Question. Testing Different Positioning Solutions for GNSS Survey. Remote Sens. 2021, 13, 1406. [Google Scholar] [CrossRef]
- Keay, J.; Parcak, H.; Strutt, D. High Resolution Space and Ground-Based Remote Sensing and Implications for Landscape Archaeology: The Case from Portus, Italy. JAS 2014, 52, 277–292. [Google Scholar] [CrossRef]
- Corsini, A.; Castagnetti, C.; Bertacchini, E.; Riccardo, R. Integrating Airborne and Multi-Temporal Long-Range Terrestrial Laser Scanning with Total Station Measurements for Mapping and Monitoring a Compound Slow Moving Rock Slide. Earth Surf. Process. Landf. 2013, 38, 1330–1338. [Google Scholar] [CrossRef]
- Rodríguez, P.; Jiménez, B.; Muñoz, L.; Arias, P.; Gonzalez, D. Mobile LiDAR System: New Possibilities for the Documentation and Dissemination of Large Cultural Heritage Sites. Remote Sens. 2017, 9, 189. [Google Scholar] [CrossRef] [Green Version]
- Terrone, M.; Piana, P.; Paliaga, G.; D’Orazi, M.; Faccini, F. Coupling Historical Maps and LiDAR Data to Identify Man-Made Landforms in Urban Areas. ISPRS Int. J. Geo-Inf. 2021, 10, 349. [Google Scholar] [CrossRef]
- Hirano, A.; Welch, R.; Lang, H. Mapping from ASTER Stereo Image Data: DEM Validation and Accuracy Assessment. ISPRS J. Photogramm. Remote Sens. 2003, 57, 356–370. [Google Scholar] [CrossRef]
- Doneus, M. Openness as Visualization Technique for Interpretative Mapping of Airborne Lidar Derived Digital Terrain Models. Remote Sens. 2013, 5, 6427–6442. [Google Scholar] [CrossRef] [Green Version]
- Harwin, S.; Lucieer, A. Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Un-manned Aerial Vehicle (UAV) Imagery. Remote Sens. 2012, 4, 1573–1599. [Google Scholar] [CrossRef]
- Alshawabkeh, Y.; Baik, A.; Miky, Y. Integration of Laser Scanner and Photogrammetry for Heritage BIM Enhancement. ISPRS Int. J. Geo-Inf. 2021, 10, 316. [Google Scholar] [CrossRef]
- Lovitt, J.M.; McDermid, J. Assessing the Value of UAV Photogrammetry for Characterizing Terrain in Complex Peatlands. Remote Sens. 2017, 9, 715. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, I.; Ojeda, W.; Marcial, J.; Enciso, J. Digital Terrain Models Generated with Low-Cost UAV Photogrammetry: Methodology and Accuracy. ISPRS Int. J. Geo-Inf. 2021, 10, 285. [Google Scholar] [CrossRef]
- Cho, J.-W.; Lee, J.-K.; Park, J. Large-Scale Earthwork Progress Digitalization Practices Using Series of 3D Models Generated from UAS Images. Drones 2021, 5, 147. [Google Scholar] [CrossRef]
- Crawford, B.; Swanson, E.; Schultz-Fellenz, E.; Collins, A.; Dann, J.; Lathrop, E.; Milazzo, D. A New Method for High Resolution Surface Change Detection: Data Collection and Validation of Measurements from UAS at the Nevada National Security Site, Nevada, USA. Drones 2021, 5, 25. [Google Scholar] [CrossRef]
- Angelo, G.; Piersanti, M.; Pignalberi, A.; Coco, I.; De Michelis, P.; Tozzi, R.; Pezzopane, M.; Alfonsi, L.; Cilliers, P.; Ubertini, P. Investigation of the Physical Processes Involved in GNSS Amplitude Scintillations at High Latitude: A Case Study. Remote Sens. 2021, 13, 2493. [Google Scholar]
- Liu, X.; Chen, H.; Jiang, W.; Xi, R. Modeling and Assessment of GNSS/Galileo/BDS Precise Point Positioning with Ambiguity Resolution. Remote Sens. 2019, 11, 2693. [Google Scholar] [CrossRef] [Green Version]
- Bewley, H.; Crutchley, S.; Shell, C. New Light on an Ancient Landscape: LiDAR Survey in the Stonehenge World Heritage Site. Antiquity 2005, 79, 636–647. [Google Scholar] [CrossRef]
- Devereux, B.J.; Amable, G.S.; Crow, P. Visualisation of LiDAR Terrain Models for Archaeological Feature Detection. Antiquity 2008, 82, 470–479. [Google Scholar] [CrossRef]
- Bennett, R.; Welham, K.; Hill, R.; Ford, A. A Comparison of Visualization Techniques for Models Created from Airborne Laser Scanned Data. Archaeol. Prospect. 2012, 19, 41–48. [Google Scholar] [CrossRef]
- Pricope, N.G.; Minei, A.; Halls, J.N.; Chen, C.; Wang, Y. UAS Hyperspatial LiDAR Data Performance in Delineation and Classification across a Gradient of Wetland Types. Drones 2022, 6, 268. [Google Scholar] [CrossRef]
- Shukla, D.; Komerath, N. Multirotor drone aerodynamic interaction investigation. Drones 2018, 2, 43. [Google Scholar] [CrossRef] [Green Version]
- Artale, V.; Milazzo, L.; Ricciardello, A. Mathematical Modeling of Hexacopter. Appl. Math. Sci. 2013, 7, 4805–4811. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Rohacs, J.; Rohacs, D. Autonomous Flight Trajectory Control System for Drones in Smart City Traffic Management. ISPRS Int. J. Geo-Inf. 2021, 10, 338. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, L.; Deng, H.; Ma, M.; Zhong, X.; Wen, P. Measurement of Unmanned Aerial Vehicle Attitude Angles Based on a Single Captured Image. Sensors 2018, 18, 2655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, K.W.; Duong, T.T.; Liao, J.K.; Lai, Y.C.; Chang, C.C.; Cai, J.M.; Huang, S.C. On-Line Smoothing for an Integrated Navigation System with Low-Cost MEMS Inertial Sensors. Sensors 2012, 12, 17372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Yuan, H. Analysis of Unmanned Aerial Vehicle Navigation and Height Control System Based on GNSS. Syst. Eng. Electron. Technol. 2010, 21, 643–649. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, W.; Li, Z.; Zhou, Z. Improved the Accuracy of Seafloor Topography from Altimetry-Derived Gravity by the Topography Constraint Factor Weight Optimization Method. Remote Sens. 2021, 13, 2277. [Google Scholar] [CrossRef]
- Huang, P. Triangular Irregular Network Generation and Topographical Modeling. Comput. Ind. 1989, 12, 203–213. [Google Scholar] [CrossRef]
- Tsai, J. Delaunay Triangulations in TIN Creation: An Overview and a Linear-Time Algorithm. Int. J. Geo-Graph. Inf. Sci. 1993, 7, 501–524. [Google Scholar] [CrossRef]
- Watson, F.; Philip, G.M. A Refinement of Inverse Distance Weighted Interpolation. Geoprocessing 1985, 2, 315–327. [Google Scholar]
Equipment | Items | Values |
---|---|---|
UAV platform | Overall size (mm) | 1290 × 650 |
Motor type | TTA6215 | |
Standard take-off weight (kg) | 23 | |
Flight controller | Pixhawk | |
Flight altitude (m) | 30 | |
GNSS module | GNSS receivers | U-blox NEO-M8T |
Processing unit | Intel Edison | |
Overall size (mm) | 45.5 × 27 × 9.2 | |
Weight (g) | 14 | |
Supply voltage (V) | 4.75 to 5.5 DC | |
Power consumption (W) | <1 | |
Signals | GNSS, GLONASS, BDS | |
Out frequency (Hz) | 10 | |
Antenna | Tallysman TW4721 | |
LiDAR | Overall size (mm) | 136 × 104 × 57 |
Weight (g) | 800 | |
Measuring resolution (mm) | 1 | |
Output frequency (Hz) | 2000 | |
Measuring range (m) | 300 | |
Beam divergence (milliradians) | 1.7 | |
Measuring laser wavelength (nm) | 905 | |
Supply voltage (V) | 10 to 30 DC | |
Power consumption (W) | <5 |
Field NO. | Point NO. | Easting/m | Northing/m | Ground Elevation/m | |
---|---|---|---|---|---|
UAV-LiDAR System | Handheld PPK-GNSS | ||||
Field 1 | 1 | 312,217.07 | 3,848,795.93 | 63.658 | 63.616 |
2 | 312,217.80 | 3,848,801.52 | 63.628 | 63.593 | |
3 | 312,219.74 | 3,848,803.24 | 63.64 | 63.655 | |
4 | 312,223.89 | 3,848,806.07 | 63.657 | 63.679 | |
5 | 312,226.45 | 3,848,809.20 | 63.649 | 63.607 | |
6 | 312,229.30 | 3,848,811.51 | 63.404 | 63.476 | |
7 | 312,229.85 | 3,848,790.93 | 63.605 | 63.565 | |
8 | 312,233.01 | 3,848,793.73 | 63.67 | 63.631 | |
9 | 312,234.60 | 3,848,796.05 | 63.514 | 63.568 | |
10 | 312,236.79 | 3,848,798.72 | 63.631 | 63.664 | |
11 | 312,239.10 | 3,848,802.99 | 63.572 | 63.529 | |
12 | 312,241.29 | 3,848,805.18 | 63.685 | 63.662 | |
Field 2 | 1 | 312,243.61 | 3,848,872.26 | 63.420 | 63.369 |
2 | 312,247.92 | 3,848,874.06 | 63.522 | 63.508 | |
3 | 312,251.31 | 3,848,877.77 | 63.526 | 63.509 | |
4 | 312,254.22 | 3,848,881.96 | 63.531 | 63.596 | |
5 | 312,257.82 | 3,848,887.05 | 63.549 | 63.524 | |
6 | 312,263.32 | 3,848,890.26 | 63.532 | 63.584 | |
7 | 312,273.22 | 3,848,883.35 | 63.609 | 63.558 | |
8 | 312,270.82 | 3,848,880.46 | 63.635 | 63.696 | |
9 | 312,265.42 | 3,848,876.86 | 63.629 | 63.542 | |
10 | 312,262.92 | 3,848,873.27 | 63.641 | 63.657 | |
11 | 312,260.31 | 3,848,869.36 | 63.542 | 63.681 | |
12 | 312,253.82 | 3,848,864.66 | 63.535 | 63.578 |
Field NO. | Point NO. | Easting/m | Northing/m | Ground Elevation/m | ||||
---|---|---|---|---|---|---|---|---|
PPK-GNSS | TIN | IDW | Natural Neighbor | Kriging | ||||
Field 1 | 1 | 312,227.81 | 3,848,810.62 | 63.461 | 63.489 | 63.476 | 63.501 | 63.497 |
2 | 312,225.17 | 3,848,807.27 | 63.587 | 63.657 | 63.655 | 63.654 | 63.654 | |
3 | 312,222.05 | 3,848,804.39 | 63.693 | 63.645 | 63.636 | 63.632 | 63.631 | |
4 | 312,240.04 | 3,848,804.39 | 63.618 | 63.637 | 63.644 | 63.644 | 63.644 | |
5 | 312,218.93 | 3,848,801.75 | 63.585 | 63.636 | 63.642 | 63.641 | 63.643 | |
6 | 312,238.12 | 3,848,800.07 | 63.656 | 63.619 | 63.629 | 63.617 | 63.627 | |
7 | 312,217.25 | 3,848,798.15 | 63.578 | 63.631 | 63.642 | 63.638 | 63.642 | |
8 | 312,235.48 | 3,848,797.43 | 63.462 | 63.570 | 63.579 | 63.575 | 63.577 | |
9 | 312,234.52 | 3,848,795.03 | 63.704 | 63.590 | 63.573 | 63.585 | 63.586 | |
10 | 312,231.64 | 3,848,792.63 | 63.779 | 63.639 | 63.636 | 63.633 | 63.634 | |
Field 2 | 1 | 312,259.81 | 3,848,887.79 | 63.589 | 63.546 | 63.543 | 63.546 | 63.546 |
2 | 312,257.09 | 3,848,884.10 | 63.520 | 63.572 | 63.581 | 63.578 | 63.579 | |
3 | 312,272.05 | 3,848,881.38 | 63.676 | 63.626 | 63.623 | 63.625 | 63.624 | |
4 | 312,253.59 | 3,848,879.43 | 63.554 | 63.508 | 63.504 | 63.502 | 63.502 | |
5 | 312,268.75 | 3,848,878.85 | 63.683 | 63.636 | 63.626 | 63.634 | 63.633 | |
6 | 312,250.09 | 3,848,876.71 | 63.538 | 63.481 | 63.474 | 63.485 | 63.483 | |
7 | 312,264.47 | 3,848,874.19 | 63.670 | 63.651 | 63.651 | 63.652 | 63.652 | |
8 | 312,246.78 | 3,848,873.41 | 63.495 | 63.471 | 63.462 | 63.471 | 63.469 | |
9 | 312,261.36 | 3,848,871.66 | 63.519 | 63.578 | 63.594 | 63.586 | 63.588 | |
10 | 312,256.89 | 3,848,867.38 | 63.593 | 63.549 | 63.546 | 63.549 | 63.551 |
TIN | IDW | Natural Neighbor | Kriging | |
---|---|---|---|---|
Field 1 | 0.077 m | 0.083 m | 0.082 m | 0.082 m |
Field 2 | 0.046 m | 0.053 m | 0.048 m | 0.049 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, M.; Li, H.; Roshanianfard, A. Design and Experimental Study on an Innovative UAV-LiDAR Topographic Mapping System for Precision Land Levelling. Drones 2022, 6, 403. https://doi.org/10.3390/drones6120403
Du M, Li H, Roshanianfard A. Design and Experimental Study on an Innovative UAV-LiDAR Topographic Mapping System for Precision Land Levelling. Drones. 2022; 6(12):403. https://doi.org/10.3390/drones6120403
Chicago/Turabian StyleDu, Mengmeng, Hanyuan Li, and Ali Roshanianfard. 2022. "Design and Experimental Study on an Innovative UAV-LiDAR Topographic Mapping System for Precision Land Levelling" Drones 6, no. 12: 403. https://doi.org/10.3390/drones6120403
APA StyleDu, M., Li, H., & Roshanianfard, A. (2022). Design and Experimental Study on an Innovative UAV-LiDAR Topographic Mapping System for Precision Land Levelling. Drones, 6(12), 403. https://doi.org/10.3390/drones6120403