Hidden Hippos: Using Photogrammetry and Multiple Imputation to Determine the Age, Sex, and Body Condition of an Animal Often Partially Submerged
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Image Collection
2.3. Photogrammetry, Multiple Imputation, and Analysis
2.4. Validating Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scheele, B.C.; Legge, S.; Blanchard, W.; Garnett, S.; Geyle, H.; Gillespie, G.; Harrison, P.; Lindenmayer, D.; Lintermans, M.; Robinson, N.; et al. Continental-Scale Assessment Reveals Inadequate Monitoring for Threatened Vertebrates in a Megadiverse Country. Biol. Conserv. 2019, 235, 273–278. [Google Scholar] [CrossRef]
- DeMars, C.A.; Gilbert, S.; Serrouya, R.; Kelly, A.P.; Larter, N.C.; Hervieux, D.; Boutin, S. Demographic Responses of a Threatened, Low-Density Ungulate to Annual Variation in Meteorological and Phenological Conditions. PLoS ONE 2021, 16, e0258136. [Google Scholar] [CrossRef] [PubMed]
- Hays, G.C.; Taxonera, A.; Renom, B.; Fairweather, K.; Lopes, A.; Cozens, J.; Laloë, J.O. Changes in Mean Body Size in an Expanding Population of a Threatened Species. Proc. R. Soc. B Biol. Sci. 2022, 289, 20220696. [Google Scholar] [CrossRef] [PubMed]
- Tauler, H.; Real, J.; Hernández-Matías, A.; Aymerich, P.; Baucells, J.; Martorell, C.; Santandreu, J. Identifying Key Demographic Parameters for the Viability of a Growing Population of the Endangered Egyptian Vulture Neophron Percnopterus. Bird Conserv. Int. 2015, 25, 426–439. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, F.; Dujon, A.M.; Sprogis, K.R.; Arnould, J.P.Y.; Bejder, L. Noninvasive Unmanned Aerial Vehicle Provides Estimates of the Energetic Cost of Reproduction in Humpback Whales. Ecosphere 2016, 7, 1–18. [Google Scholar] [CrossRef]
- Burnett, J.D.; Lemos, L.; Barlow, D.; Wing, M.G.; Chandler, T.; Torres, L.G. Estimating Morphometric Attributes of Baleen Whales with Photogrammetry from Small UASs: A Case Study with Blue and Gray Whales. Mar. Mamm. Sci. 2019, 35, 108–139. [Google Scholar] [CrossRef] [Green Version]
- Kuze, N.; Malim, T.P.; Kohshima, S. Developmental Changes in the Facial Morphology of the Borneo Orangutan (Pongo Pygmaeus): Possible Signals in Visual Communication. Am. J. Primatol. 2005, 65, 353–376. [Google Scholar] [CrossRef]
- Laws, R.M. Age Criteria for the African Elephant: Loxodonta Africana. Afr. J. Ecol. 1966, 4, 1–37. [Google Scholar] [CrossRef]
- Cherdsukjai, P.; Buddhachat, K.; Brown, J.; Kaewkool, M.; Poommouang, A.; Kaewmong, P.; Kittiwattanawong, K.; Nganvongpanit, K. Age Relationships with Telomere Length, Body Weight and Body Length in Wild Dugong (Dugong Dugon). PeerJ 2020, 8, e10319. [Google Scholar] [CrossRef]
- Masoud, I.; Shapiro, F.; Kent, R.; Moses, A. A Longitudinal Study of the Growth of the New Zealand White Rabbit: Cumulative and Biweekly Incremental Growth Rates for Body Length, Body Weight, Femoral Length, and Tibial Length. J. Orthop. Res. 1986, 4, 221–231. [Google Scholar] [CrossRef]
- Norgaard, N.; Larsen, B.H. Age Determination of Harbour Seals Phoca Vitulina by Cementum Growth Layers, X-Ray of Teeth, and Body Length. Dan. Rev. Game Biol. 1991, 14, 18–32. [Google Scholar]
- Lubetkin, S.C.; Zeh, J.E.; George, J.C. Statistical Modeling of Baleen and Body Length at Age in Bowhead Whales (Balaena Mysticetus). Can. J. Zool. 2012, 90, 915–931. [Google Scholar] [CrossRef]
- Fudala, K.; Bialik, R.J. Breeding Colony Dynamics of Southern Elephant Seals at Patelnia Point, King George Island, Antarctica. Remote Sens. 2020, 12, 2964. [Google Scholar] [CrossRef]
- Bell, C.M.; Hindell, M.A.; Burton, H.R. Estimation of Body Mass in the Southern Elephant Seal, Mirounga Leonina, by Photogrammetry and Morphometrics. Mar. Mamm. Sci. 1997, 13, 669–682. [Google Scholar] [CrossRef]
- Allan, B.M.; Ierodiaconou, D.; Hoskins, A.J.; Arnould, J.P.Y. A Rapid UAV Method for Assessing Body Condition in Fur Seals. Drones 2019, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Weisgerber, J.N.; Medill, S.A.; McLoughlin, P.D. Parallel-Laser Photogrammetry to Estimate Body Size in Free-Ranging Mammals. Wildl. Soc. Bull 2015, 39, 422–428. [Google Scholar] [CrossRef]
- Smith, A.F.; Bongi, P.; Ciuti, S. Remote, Non-Invasive Photogrammetry for Measuring Physical Traits in Wildlife. J. Zool. 2021, 313, 250–262. [Google Scholar] [CrossRef]
- Berger, J. Estimation of Body-Size Traits by Photogrammetry in Large Mammals to Inform Conservation. Conserv. Biol. 2012, 26, 769–777. [Google Scholar] [CrossRef]
- Meise, K.; Mueller, B.; Zein, B.; Trillmich, F. Applicability of Single-Camera Photogrammetry to Determine Body Dimensions of Pinnipeds: Galapagos Sea Lions as an Example. PLoS ONE 2014, 9, e101197. [Google Scholar] [CrossRef]
- Shrader, A.M.; Ferreira, S.M.; van Aarde, R.J. Digital Photogrammetry and Laser Rangefinder Techniques to Measure African Elephants. South Afr. J. Wildl. Res. 2006, 36, 1–7. [Google Scholar]
- Inman, V.L.; Kingsford, R.T.; Chase, M.J.; Leggett, K.E.A. Drone-Based Effective Counting and Ageing of Hippopotamus (Hippopotamus Amphibius) in the Okavango Delta in Botswana. PLoS ONE 2019, 14, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, J.; Freedman, L.; Oliver, T.J.; McCluskey, J. Morphometric Distances between Australian Wild Rabbit Populations. Aust. J. Zool. 1977, 25, 721–732. [Google Scholar] [CrossRef]
- Poolea, W.E.; Carpenterb, S.M.; Simmsa, N.G. Multivariate Analyses of Skull Morphometrics from the Two Species of Grey Kangaroos, Macropus Giganteus Shaw and M. Fuliginosus (Desmarest). Aust. J. Zool. 1980, 28, 591–605. [Google Scholar] [CrossRef]
- Van Buuren, S. Flexible Imputation of Missing Data, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2018. [Google Scholar]
- Van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef] [Green Version]
- Lewison, R.; Pluháček, J. Hippopotamus Amphibius. The IUCN Red List of Threatened Species 2017; Global Biodiversity Information Facility: Copenhagen, Denmark, 2017. [Google Scholar]
- Eltringham, S.K. The Hippos: Natural History and Conservation; Academic Press: London, UK, 1999. [Google Scholar]
- Alonso, L.E.; Nordin, L. A Rapid Biological Assessment of the Aquatic Ecosystems of the Okavango Delta, Botswana: High Water Survey; RAP Bulletin of Biological Assessment 27; Conservation International: Washington, DC, USA, 2003. [Google Scholar]
- Eltringham, S.K. The Afrotropical Hippopotamuses (Hippopotamus and Hexaprotodon): Review of Priorities for Conservation Action and Future Research on Hippopotamuses. In Pigs, Peccaries and Hippos: Status Survey and Conservation Action Plan; Oliver, W.L., Ed.; IUCN: Gland, Switzerland, 1993; Volume 18, pp. 61–65. ISBN 2831701414. [Google Scholar]
- Olivier, R.C.D.; Laurie, W.A. Habitat Utilization by Hippopotamus in the Mara River. Afr. J. Ecol. 1974, 12, 249–271. [Google Scholar] [CrossRef]
- Karstad, E.L. The Ecology of Hippopotami (Hippopotamus Amphibius) in Southwestern Kenya. Master’s Thesis, The University of Alberta, Edmonton, AB, Canada, 1984. [Google Scholar]
- Ngog Nje, J. Contribution à l’étude de La Structure de La Population Des Hippopotames (Hippopotamus Amphibius L.) Au Parc National de La Bénoué (Cameroun). Mammalia 1988, 52, 149–158. [Google Scholar] [CrossRef]
- Barklow, W.E. Some Underwater Sounds of the Hippopotamus (Hippopotamus Amphibius). Mar. Freshw. Behav. Physiol. 1997, 29, 237–249. [Google Scholar] [CrossRef]
- Beckwitt, R.; Shea, J.; Osborne, D.; Krueger, S.; Barklow, W. A PCR-Based Method for Sex Identification in Hippopotamus Amphibius. Afr. Zool. 2002, 37, 127–130. [Google Scholar] [CrossRef]
- Timbuka, C.D. The Ecology and Behaviour of the Common Hippopotamus, Hippopotamus Amphibius L. in Katavi National Park, Tanzania: Responses to Varying Water Resources. Ph.D. Thesis, University of East Anglia, Norwich, UK, 2012. [Google Scholar]
- Perry, L.R. Observations of Hippopotamus H. Amphibius in the Little Scarcies River of Sierra Leone and Arguments for Their Conservation Based on Roles They Play in Riverine Grasslands and Nutrient Loading. Master’s Thesis, Michigan Technological University, Houghton, MI, USA, 2015. [Google Scholar]
- Prinsloo, A. Aspects of the Spatial and Behavioural Ecology of Hippopotamus Amphibius in the Saint Lucia Estuary, KwaZulu-Natal, South Africa. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 2016. [Google Scholar]
- Laws, R.M.; Clough, G. Observations on Reproduction in the Hippopotamus Hippopotamus Amphibius Linn. In Comparative Biology of Reproduction in Mammals; Rowlands, I.W., Ed.; Academic Press: London, UK, 1966; Volume 15, pp. 117–140. [Google Scholar]
- Laws, R.M. Dentition and Ageing of the Hippopotamus. Afr. J. Ecol. 1968, 6, 19–52. [Google Scholar] [CrossRef]
- Sayer, J.A.; Rakha, A.M. The Age of Puberty of the Hippopotamus (Hippopotamus Amphibius Linn.) in the Luangwa River in Eastern Zambia. Afr. J. Ecol. 1974, 12, 227–232. [Google Scholar] [CrossRef]
- Skinner, J.D.; Scorer, J.A.; Millar, R.P. Observations on the Reproductive Physiological Status of Mature Herd Bulls, Bachelor Bulls, and Young Bulls in the Hippopotamus Hippopotamus Amphibius Amphibius Linnaeus. Gen. Comp. Endocrinol. 1975, 26, 92–95. [Google Scholar] [CrossRef]
- Pienaar, U.; van Wyk, P.; Fairall, N. An Experimental Cropping Scheme of Hippopotami in the Letaba River of the Kruger National Park. Koedoe 1966, 9, 1–33. [Google Scholar] [CrossRef]
- Clough, G. Reproduction in the Hippopotamus Hippopotamus Amphibius (Linn.). Ph.D. Thesis, University of Cambridge, Cambridge, UK, 1967. [Google Scholar]
- Ansell, W.F.H. Measurements and Weights of Adult Hippo from Zambia. Puku 1965, 3, 181. [Google Scholar]
- Martin, R.B. Transboundary Species Project, Background Study, Hippopotamus. In Proceedings of the Transboundary Mammal Project of the Ministry of Environment and Tourism, Namibia facilitated by The Namibia Nature Foundation, Windhoek, Namibia, July 2005. [Google Scholar]
- Durrheim, D.N.; Leggat, P.A. Risk to Tourists Posed by Wild Mammals in South Africa. J. Travel. Med. 1999, 6, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Dunham, K.M.; Ghiurghi, A.; Cumbi, R.; Urbano, F. Human–Wildlife Conflict in Mozambique: A National Perspective, with Emphasis on Wildlife Attacks on Humans. Oryx 2010, 44, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Chomba, C.; Senzota, R.; Chabwela, H.; Mwitwa, J.; Nyirenda, V. Patterns of Human-Wildlife Conflicts in Zambia, Causes, Consequences and Management Responses. J. Ecol. Nat. Environ. 2012, 4, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Lhoest, S. Contribution Au Monitoring de Populations d’Hippopotame Commun (Hippopotamus Amphibius L.) Par l’utilisation de La Technologie Drone (Parc National de La Garamba, Republique Democratique Du Congo). University of Liège, Liège, Belgium. 2015. Available online: https://orbi.uliege.be/bitstream/2268/200842/1/TFE_LHOEST_Simon.pdf (accessed on 1 December 2022).
- Fritsch, C.J.A.; Plebani, M.; Downs, C.T. Inundation Area Drives Hippo Group Aggregation and Dispersal in a Seasonal Floodplain System. Mamm. Biol. 2022. [Google Scholar] [CrossRef]
- McCarthy, T.; Cooper, G.R.J.; Tyson, P.D.; Ellery, W.N. Seasonal Flooding in the Okavango Delta, Botswana-Recent History and Future Prospects. S. Afr. J. Sci. 2000, 96, 25–33. [Google Scholar]
- Gumbricht, T.; Wolski, P.; Frost, P.; McCarthy, T. Forecasting the Spatial Extent of the Annual Flood in the Okavango Delta, Botswana. J. Hydrol. 2004, 290, 178–191. [Google Scholar] [CrossRef]
- Tooth, S.; McCarthy, T.S. Wetlands in Drylands: Geomorphological and Sedimentological Characteristics, with Emphasis on Examples from Southern Africa. Prog. Phys. Geogr. 2007, 31, 3–41. [Google Scholar] [CrossRef]
- McCarthy, T.S.; Ellery, W.N. The Okavango Delta. Geobulletin 1993, 36, 5–8. [Google Scholar] [CrossRef]
- Okavango Research Institute Okavango Delta: Monitoring and Forecasting; Maun, Botswana, 2019. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwia7JLt5PP7AhXHzzgGHeKKA3kQFnoECA4QAQ&url=http%3A%2F%2Fwww.okavangodata.ub.bw%2Fori%2Fmonitoring%2F&usg=AOvVaw1B93zIYiOAel8wqpvQtQ6e (accessed on 1 December 2022).
- Amoussou, G.K.; Mensah, G.A.; Sinsin, B. Données Biologiques, Éco-Éthologiques et Socio-Économiques Sur Les Groupes d’hippopotames (Hippopotamus Amphibius) Isolés Dans Les Terroirs Villageois En Zones Humides Des Départements Du Mono et Du Couffo Au Sud-Bénin. Bull. Rech. Agron. Bénin 2006, 53, 22–35. [Google Scholar]
- Inman, V.L. Population Size, Distribution and Small-Scale Seasonal Variations in Pod Dynamics, Habitat Selection and Behaviour Of Hippopotamus (Hippopotamus Amphibius) in the Okavango Delta, Northern Botswana. Ph.D. Thesis, University of New South Wales, Sydney, Australia, 2020. [Google Scholar]
- DJI Phantom 4 Drone 2016. Available online: https://www.dji.com/cn/phantom-4 (accessed on 1 December 2022).
- VIZf/x DJI Phantom 4 Lens Calculations 2016. Available online: https://forum.dji.com/forum.php?mod=viewthread&tid=72163 (accessed on 1 December 2022).
- VLC Media Player VLC Media Player Homepage 2014. Available online: https://www.videolan.org/ (accessed on 1 December 2022).
- Rasband, W.S. ImageJ. 2009. Available online: https://imagej.net/learn/flavors (accessed on 1 December 2022).
- Owen-Smith, R.N. Megaherbivores: The Influence of Very Large Body Size on Ecology; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Dibloni, T.O.; Vermeulen, C.; Guenda, W.; Alfred, M.N.; Théophile, D.O.; Vermeulen, C. Structure Démographique et Mouvements Saisonniers Des Populations d’hippopotame Commun, Hippopotamus Amphibius Linné 1758 Dans La Zone Sud Soudanienne Du Burkina Faso. Trop. Conserv. Sci. 2010, 3, 175–189. [Google Scholar] [CrossRef] [Green Version]
- Von Hippel, P.T. How to Impute Interactions, Squares, and Other Transformed Variables. Sociol. Methodol. 2009, 39, 265–291. [Google Scholar] [CrossRef]
- Blowers, T.E. Social Grouping Behaviors of Captive Female Hippopotamus Amphibius. Master’s Thesis, University of Central Florida, Orlando, FL, USA, 2008. [Google Scholar]
- Bourliere, M.F.; Verschuren, J. Exploration Du Park National Albert. Institut des Parcs Nationaux du Congo Belge: Brussels, Belgium, 1960. Available online: http://www.apncb.be/missions/exploration-du-parc-national-albert-mission-j-76826 (accessed on 1 December 2022).
- Dittrich, L. Age of Sexual Maturity in the Hippopotamus. Int. Zoo Yearb. 1976, 16, 171–173. [Google Scholar] [CrossRef]
- Goss, L.J. Breeding Notes on the Hippopotamus (Hippopotamus Amphibius), and the Giraffe (Giraffa Camelopardalis) at Cleveland Zoo. Int. Zoo Yearb. 1960, 2, 90. [Google Scholar]
- Graham, L.; Reid, K.; Webster, T.; Richards, M.; Joseph, S. Endocrine Patterns Associated with Reproduction in the Nile Hippopotamus (Hippopotamus Amphibius) as Assessed by Fecal Progestagen Analysis. Gen. Comp. Endocrinol. 2002, 128, 74–81. [Google Scholar] [CrossRef]
- Kerbert, C. Over Dracht, Geboorte, Puberteit En Levensduur van Hippopotamus Amphibius L. Bijdragen tot de Dierkunde 1922, 22, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Mouquet, A. Gestations d’une Femelle d’Hippopotame. Bull. Société Nat. Acclim. 1919, 167–180. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjFqJGz3vP7AhXzxIsBHV84AXsQFnoECBEQAQ&url=http%3A%2F%2Fwww.apncb.be%2Farchives%2Fpublications%2Fexploration-national-park-albert%2Fpublications-hors-series%2Fmonographie-ethologique-de-l-hippopotame%2Fverheyen_1954_complet.pdf%2Fdownload%2Fen%2F1%2Fverheyen_1954_complet.pdf&usg=AOvVaw0VWKDp-32QQ7KtH89hvWZD (accessed on 1 December 2022).
- Vosseler, J. Zur Fortpflanzung Und Aufzucht Der Nilpferde. Zool. Palaerct 1923, 3, 145–155. [Google Scholar]
- Benjamini, Y.; Yekutieli, D. The Control of the False Discovery Rate in Multiple Testing under Dependency. Ann. Stat. 2001, 29, 1165–1188. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing. 2018. Available online: https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=2342186 (accessed on 1 December 2022).
- Attwell, R.I.G. Surveying Luangwa Hippo. Puku 1963, 1, 153–165. [Google Scholar]
- Klingel, H. Hippopotamus Amphibius Common Hippopotamus. In Mammals of Africa: Volume VI: Pigs, Hippopotamuses, Chevrotain, Giraffes, Deer and Bovids; Kingdon, J., Hoffman, M., Eds.; Bloomsbury Publishing: London, UK, 2013; pp. 68–77. [Google Scholar]
- Hodgson, J.C.; Holman, D.; Terauds, A.; Koh, L.P.; Goldsworthy, S.D. Rapid Condition Monitoring of an Endangered Marine Vertebrate Using Precise, Non-Invasive Morphometrics. Biol. Conserv. 2020, 242, 108402. [Google Scholar] [CrossRef]
- Soledade Lemos, L.; Burnett, J.D.; Chandler, T.E.; Sumich, J.L.; Torres, L.G. Intra- and Inter-Annual Variation in Gray Whale Body Condition on a Foraging Ground. Ecosphere 2020, 11, e03094. [Google Scholar] [CrossRef] [Green Version]
- Sadler, P. Sexual Dimorphism in the Common Hippopotamus (Hippopotamus Amphibius). Master’s Thesis, Bangor University, Bangor, UK, 2020. [Google Scholar]
- Wheaton, C.J.; Joseph, S.; Reid, K.; Webster, T.; Richards, M.; Savage, A. Body Weight as an Effective Tool for Determination of Onset of Puberty in Captive Female Nile Hippopotami (Hippopotamus Amphibius). Zoo Biol. 2006, 25, 59–71. [Google Scholar] [CrossRef]
- Ansell, W.F.H. Hippo Census on the Luangwa River. Puku 1965, 32, 647–655. [Google Scholar]
- Kayanja, F.I.B. The Reproductive Biology of the Male Hippopotamus. Symp. Zool. Soc. Lond. 1989, 61, 181–196. [Google Scholar]
- Marshall, P.J.; Sayer, J.A. Population Ecology and Response to Cropping of a Hippopotamus Population in Eastern Zambia. J. Appl. Ecol. 1976, 13, 391–403. [Google Scholar] [CrossRef]
- Laker-Ojok, G.L. The Effects of Large Herbivores on the Ecosystem of Queen Elizabeth National Park, Uganda. Ph.D. Thesis, Michigan State University, East Lansing, MI, USA, 1985. [Google Scholar]
- Tembo, A. Population Status of the Hippopotamus on the Luangwa River, Zambia. Afr. J. Ecol. 1987, 25, 71–77. [Google Scholar] [CrossRef]
- Smart, A.C. The Density of Hippopotamus Amphibius, Linneaus at Lake Naivasha Kenya. Trop. Freshw. Biol. 1990, 2, 241–247. [Google Scholar]
- Viljoen, P.C. Changes in Number and Distribution of Hippopotamus (Hippopotamus Amphibius) in the Sabie River, Kruger National Park, during the 1992 Drought. Koedoe 1995, 38, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Viljoen, P.C.; Biggs, H.C. Population Trends of Hippopotami in the Rivers of the Kruger National Park, South Africa. In Behaviour and Ecology of Riparian Mammals; Dunstone, N., Gorman, M., Eds.; Cambridge University Press: Cambridge, UK, 1998; pp. 251–279. [Google Scholar]
- Brugière, D.; Magassouba, B.; Sylla, A.; Diallo, H.; Sow, M. Population Abundance of the Common Hippopotamus Hippopotamus Amphibius in the Haut Niger National Park, Republic of Guinea. Mammalia 2006, 70, 14–16. [Google Scholar] [CrossRef]
- Kanga, E.M.; Ogutu, J.O.; Olff, H.; Santema, P. Population Trend and Distribution of the Vulnerable Common Hippopotamus Hippopotamus Amphibius in the Mara Region of Kenya. Oryx 2011, 45, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Treydte, A.C.; van Beeck, F.A.L.; Ludwig, F.; Heitkönig, I.M.A. Improved Quality of Beneath-Canopy Grass in South African Savannas: Local and Seasonal Variation. J. Veg. Sci. 2008, 19, 663–670. [Google Scholar] [CrossRef]
- Hempson, G.P.; Archibald, S.; Bond, W.J.; Ellis, R.P.; Grant, C.C.; Kruger, F.J.; Kruger, L.M.; Moxley, C.; Owen-Smith, N.; Peel, M.J.S.; et al. Ecology of Grazing Lawns in Africa. Biol. Rev. 2015, 90, 979–994. [Google Scholar] [CrossRef] [PubMed]
- Noren, S.R.; Schwarz, L.; Chase, K.; Aldrich, K.; van Oss, K.M.M.; Leger, J.S. Validation of the Photogrammetric Method to Assess Body Condition of an Odontocete, the Short-Finned Pilot Whale Globicephala Macrorhynchus. Mar. Ecol. Prog. Ser. 2019, 620, 185–200. [Google Scholar] [CrossRef]
- Schwarm, A.; Ortmann, S.; Hofer, H.; Streich, W.J.; Flach, E.J.; Kühne, R.; Hummel, J.; Castell, J.C.; Clauss, M. Digestion Studies in Captive Hippopotamidae: A Group of Large Ungulates with an Unusually Low Metabolic Rate. J. Anim. Physiol. Anim. Nutr. 2006, 90, 300–308. [Google Scholar] [CrossRef]
- Linchant, J.; Lisein, J.; Semeki, J.; Lejeune, P.; Vermeulen, C. Are Unmanned Aircraft Systems (UASs) the Future of Wildlife Monitoring? A Review of Accomplishments and Challenges. Mamm. Rev. 2015, 45, 239–252. [Google Scholar] [CrossRef]
- Christie, K.S.; Gilbert, S.L.; Brown, C.L.; Hatfield, M.; Hanson, L. Unmanned Aircraft Systems in Wildlife Research: Current and Future Applications of a Transformative Technology. Front. Ecol. Environ. 2016, 14, 241–251. [Google Scholar] [CrossRef]
- Francis, R.J.; Lyons, M.B.; Kingsford, R.T.; Brandis, K.J. Counting Mixed Breeding Aggregations of Animal Species Using Drones: Lessons from Waterbirds on Semi-Automation. Remote Sens. 2020, 12, 1185. [Google Scholar] [CrossRef] [Green Version]
- Fritsch, C.J.; Downs, C.T. Evaluation of Low-cost Consumer-grade UAVs for Conducting Comprehensive High-frequency Population Censuses of Hippopotamus Populations. Conserv. Sci. Pract. 2020, 2, 1–11. [Google Scholar] [CrossRef]
- Lhoest, S.; Linchant, J.; Quevauvillers, S.; Vermeulen, C.; Lejeune, P. How Many Hippos (HOMHIP): Algorithm for Automatic Counts of Animals with Infra-Red Thermal Imagery from UAV. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 355–362. [Google Scholar] [CrossRef]
- Woolcock, A.B.; Cotton, S.; Cotton, A.J. Effectiveness of Using Drones and Convolutional Neural Networks to Monitor Aquatic Megafauna. Afr. J. Ecol. 2022, 60, 544–556. [Google Scholar] [CrossRef]
- Linchant, J.; Lhoest, S.; Quevauvillers, S.; Lejeune, P.; Ngabinzeke, J.S.; Belanganayi, B.L.; Delvingt, W. UAS Imagery Reveals New Survey Opportunities for Counting Hippos. PLoS ONE 2018, 13, e0206413. [Google Scholar] [CrossRef]
- Scotcher, J.S.B. Hippopotamus Numbers and Movements in Ndumu Game Reserve. Lammergeyer 1978, 24, 5–12. [Google Scholar]
- Karstad, E.L.; Hudson, R.J. Census of the Mara River Hippopotamus (Hippopotamus Amphibius), Southwest Kenya, 1980–1982. Afr. J. Ecol. 1984, 22, 143–147. [Google Scholar] [CrossRef]
- Balole-Bwami, E.; de Merode, E.; Kujirakwinja, D.; Tchouamo, I.R. Conservation de l’hippopotame Commun (Hippopotamus Amphibius) Au Parc National Des Virunga: Population Actuelle et Mesures de Protection. Parcs Réserves 2014, 69, 27. [Google Scholar]
Variable | % Missing | R2 Measured | R2 Imputed |
---|---|---|---|
log(Back length) | 68.7 | 0.95 | 0.95 |
log(Neck length) | 44.1 | 0.61 | 0.72 |
log(Head length) | 9.6 | 0.67 | 0.77 |
log(Body width) | 65.7 | 0.83 | 0.84 |
log(Neck width) | 43.9 | 0.63 | 0.72 |
log(Forehead width) | 6.3 | 0.70 | 0.75 |
log(Snout width) | 26.6 | 0.71 | 0.76 |
Hippo | Total Length (cm) | Age | Age Class | |||||
---|---|---|---|---|---|---|---|---|
Measured | Imputed | Measured (Average) | Measured (Sex-Dependent) | Imputed | Visual | Measured | Imputed | |
1 | 338.87 | 38 | 35 | Adult male | Adult (potential male): neck width 70.3 cm neck length 54.5 cm snout width 50.0 cm | |||
2 | 317.82 | 313.73 | 27 | - | 25 | Adult | Adult (potential male): snout width 49.2 cm | Adult |
3 | 296.80 | 296.15 | 16 | 17 | 16 | Adult female | Adult | Adult |
4 | 295.40 | 15 | 16 | Adult female | Adult | |||
5 | 323.25 | 323.58 | 30 | 33 | 30 | Adult (likely female) | Adult | Adult |
6 | 300.06 | 299.49 | 18 | 19 | 17 | Adult (likely female) | Adult | Adult |
7 | 264.11 | 7 | - | p | Adult | Adult | ||
8 | 194.68 | 178.71 | 2 | - | 1 | Subadult | Subadult | Juvenile |
9 | 184.62 | 196.97 | 2 | - | 2 | Subadult | Subadult | Subadult |
10 | 134.26 | 135.17 | <1 | - | <1 | Juvenile | Juvenile | Juvenile |
11 | 121.86 | 122.90 | <1 | - | <1 | Juvenile | Juvenile | Juvenile |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inman, V.L.; Leggett, K.E.A. Hidden Hippos: Using Photogrammetry and Multiple Imputation to Determine the Age, Sex, and Body Condition of an Animal Often Partially Submerged. Drones 2022, 6, 409. https://doi.org/10.3390/drones6120409
Inman VL, Leggett KEA. Hidden Hippos: Using Photogrammetry and Multiple Imputation to Determine the Age, Sex, and Body Condition of an Animal Often Partially Submerged. Drones. 2022; 6(12):409. https://doi.org/10.3390/drones6120409
Chicago/Turabian StyleInman, Victoria L., and Keith E. A. Leggett. 2022. "Hidden Hippos: Using Photogrammetry and Multiple Imputation to Determine the Age, Sex, and Body Condition of an Animal Often Partially Submerged" Drones 6, no. 12: 409. https://doi.org/10.3390/drones6120409
APA StyleInman, V. L., & Leggett, K. E. A. (2022). Hidden Hippos: Using Photogrammetry and Multiple Imputation to Determine the Age, Sex, and Body Condition of an Animal Often Partially Submerged. Drones, 6(12), 409. https://doi.org/10.3390/drones6120409