Blowing in the Wind: Using a Consumer Drone for the Collection of Humpback Whale (Megaptera novaeangliae) Blow Samples during the Arctic Polar Nights
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Equipment
2.2. Sampling Method and Processing
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethics statement
References
- Castellini, M. History of polar whaling: Insights into the physiology of the great whales. Comp. Biochem. Physiol. -A Mol. Integr. Physiol. 2000, 126, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Waugh, C.A.; Monamy, V. Opposing lethal wildlife research when nonlethal methods exist: Scientific whaling as a case study. J. Fish. Wildl. Manag. 2016, 7, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, C.E.; Alexander, K.A. Unchartered waters: Climate change likely to intensify infectious disease outbreaks causing mass mortality events in marine mammals. Glob. Chang. Biol. 2020, 26, 4284–4301. [Google Scholar] [CrossRef] [PubMed]
- van Weelden, C.; Towers, J.R.; Bosker, T. Impacts of climate change on cetacean distribution, habitat and migration. Clim. Chang. Ecol. 2021, 1, 100009. [Google Scholar] [CrossRef]
- Redfern, J.V.; McKenna, M.F.; Moore, T.J.; Calambokidis, J.; Deangelis, M.L.; Becker, E.A.; Barlow, J.; Forney, K.A.; Fiedler, P.C.; Chivers, S.J. Assessing the Risk of Ships Striking Large Whales in Marine Spatial Planning. Conserv Biol. 2013, 27, 292–302. [Google Scholar] [CrossRef]
- Wise, J.P., Jr.; Wise, J.T.; Wise, C.F.; Wise, S.S.; Zhu, C.; Browning, C.L.; Zheng, T.; Perkins, C.; Gianios, C., Jr.; Xie, H.; et al. Metal levels in Whales from the Gulf of Maine: A One Environmental Health Approach. Chemosphere 2019, 216, 653–660. [Google Scholar] [CrossRef]
- Fossi, M.C.; Panti, C.; Guerranti, C.; Coppola, D.; Giannetti, M.; Marsili, L.; Minutoli, R. Are baleen whales exposed to the threat of microplastics? A case study of the Mediterranean fin whale (Balaenoptera physalus). Mar Pollut Bull. 2012, 64, 2374–2379. [Google Scholar] [CrossRef]
- Blair, H.B.; Merchant, N.D.; Friedlaender, A.S.; Wiley, D.N.; Parks, S.E. Evidence for ship noise impacts on humpback whale foraging behaviour. Biol. Lett. 2016, 12, 20160005. [Google Scholar] [CrossRef] [Green Version]
- Hunt, K.E.; Moore, M.J.; Rolland, R.M.; Kellar, N.M.; Hall, A.J.; Kershaw, J.; Raverty, S.A.; Davis, C.E.; Yeates, L.C.; Fauquier, D.A.; et al. Overcoming the challenges of studying conservation physiology in large whales: A review of available methods. Conserv Physiol. 2013, 1, cot006. [Google Scholar] [CrossRef]
- Groch, K.; Blazquez, D.; Marcondes, M.; Santos, J.; Colosio, A.; Delgado, J.D.; Catão-Dias, J. Cetacean morbillivirus in Humpback whales’ exhaled breath. Trans. Emerg. Dis. 2021, 68, 1736–1743. [Google Scholar] [CrossRef]
- Hogg, C.J.; Vickers, E.R.; Rogers, T.L. Determination of testosterone in saliva and blow of bottlenose dolphins (Tursiops truncatus) using liquid chromatography-mass spectrometry. J. Chromatogr. B. 2005, 814, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Hogg, C.J.; Rogers, T.L.; Shorter, A.; Barton, K.; Miller, P.J.O.; Nowacek, D. Determination of steroid hormones in whale blow: It is possible. Mar. Mammal. Sci. 2009, 25, 605–618. [Google Scholar] [CrossRef]
- Thompson, L.A.; Spoon, T.R.; Goertz, C.E.C.; Hobbs, R.C.; Romano, T.A. Blow collection as a non-invasive method for measuring cortisol in the beluga (Delphinapterus leucas). PLoS ONE 2014, 9, e114062. [Google Scholar] [CrossRef] [PubMed]
- Burgess, E.A.; Hunt, K.E.; Kraus, S.D.; Rolland, R.M. Get the most out of blow hormones: Validation of sampling materials, field storage and extraction techniques for whale respiratory vapour samples. Conserv. Physiol. 2016, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Aksenov, A.; Yeates, L.; Pasamontes, A.; Siebe, C.; Zrodnikov, Y.; Simmons, J.; McCartney, M.; Deplanque, J.-P.; Wells, R.; Davis, C. Metabolite content profiling of bottlenose dolphin exhaled breath. Anal. Chem. 2014, 86, 10616–10624. [Google Scholar] [CrossRef] [Green Version]
- Mingramm, F.M.J.; Keeley, T.; Whitworth, D.J.; Dunlop, R.A. Relationships between blubber and respiratory vapour steroid hormone concentrations in humpback whales (Megaptera novaeangliae). Aquat. Mamm. 2019, 45, 465–477. [Google Scholar] [CrossRef]
- Acevedo-Whitehouse, K.; Rocha-Gosselin, A.; Gendron, D. A novel non-invasive tool for disease surveillance of free-ranging whales and its relevance to conservation programs. Anim. Conserv. 2010, 13, 217–225. [Google Scholar] [CrossRef]
- Burgess, E.A.; Hunt, K.E.; Kraus, S.D.; Rolland, R.M. Quantifying hormones in exhaled breath for physiological assessment of large whales at sea. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Hunt, K.E.; Rolland, R.M.; Kraus, S.D. Detection of steroid and thyroid hormones via immunoassay of North Atlantic right whale (Eubalaena glacialis) respiratory vapor. Mar. Mammal. Sci. 2014, 30, 796–809. [Google Scholar] [CrossRef]
- Mutlu, G.M.; Garey, K.W.; Robbins, R.A.; Danziger, L.H.; Rubinstein, I. Collection and analysis of exhaled breath condensate in humans. Am. J. Respir. Crit. Care Med. 2001, 164, 731–737. [Google Scholar] [CrossRef]
- Popov, T.A. Human exhaled breath analysis. Ann. Allergy Asthma. Immunol. 2011, 106, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Geoghegan, J.; Pirotta, V.; Harvey, E.; Smith, A.; Buchmann, J.; Ostrowski, M.; Eden, J.-S.; Harcourt, R.; Holmes, E. Virological sampling of inaccessible wildlife with drones. Viruses 2018, 10, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkinson, S.; Rogan, A.; Baker, C.S.; Dagdag, R.; Redlinger, M.; Polinski, J.; Urban, J.; Sremba, A.; Branson, M.; Mashburn, K.; et al. Genetic, Endocrine, and Microbiological Assessments of Blue, Humpback and Killer Whale Health using Unoccupied Aerial Systems. Wildl. Soc. Bull. 2021, 1–16. [Google Scholar] [CrossRef]
- Apprill, A.; Miller, C.A.; Moore, M.J.; Durban, J.W.; Fearnbach, H.; Barrett-Lennard, L.G. Extensive Core Microbiome in Drone-Captured Whale Blow Supports a Framework for Health Monitoring. mSystems 2017, 2. [Google Scholar] [CrossRef] [Green Version]
- Raverty, S.; Rhodes, L.; Zabek, E.; Eshghi, A.; Cameron, C.; Hanson, B.; Schroeder, P. Respiratory Microbiome of Endangered Southern Resident Killer Whales and Microbiota of Surrounding Sea Surface Microlayer in the Eastern North Pacific. Sci. Rep. 2017, 7, 394. [Google Scholar] [CrossRef] [Green Version]
- Pirotta, V.; Smith, A.; Ostrowski, M.; Russell, D.; Jonsen, I.D.; Grech, A.; Harcourt, R. An economical Custom-Built drone for assessing whale health. Front. Mar. Sci. 2017, 4, 425. [Google Scholar] [CrossRef]
- Robinson, C.V.; Nuuttila, H.K. Don’t hold your breath: Limited DNA capture using non-invasive blow sampling for small cetaceans. Aquat. Mamm. 2020, 46, 32–41. [Google Scholar] [CrossRef]
- Richard, J.T.; Schultz, K.; Goertz, C.E.C.; Hobbs, R.C.; Romano, T.A.; Sartini, B.L. Evaluating beluga (Delphinapterus leucas) blow samples as a potential diagnostic for immune function gene expression within the respiratory system. Conserv. Physiol. 2022, 10, 1–9. [Google Scholar] [CrossRef]
- Centelleghe, C.; Carraro, L.; Gonzalvo, J.; Rosso, M.; Esposti, E.; Gili, C.; Bonato, M.; Pedrotti, D.; Cardazzo, B.; Povinelli, M.; et al. The use of Unmanned Aerial Vehicles (UAVs) to sample the blow microbiome of small cetaceans. PLoS ONE 2020, 15, e0246177. [Google Scholar] [CrossRef]
- Raudino, H.C.; Tyne, J.A.; Smith, A.; Ottewell, K.; McArthur, S.; Kopps, A.M.; Chabanne, D.; Harcourt, R.G.; Pirotta, V.; Waples, K. Challenges of collecting blow from small cetaceans. Ecosphere 2019, 10, e02901. [Google Scholar] [CrossRef]
- Domínguez-Sánchez, C.A.; Acevedo-Whitehouse, K.A.; Gendron, D. Effect of drone-based blow sampling on blue whale (Balaenoptera musculus) behavior. Mar. Mammal. Sci. 2018, 34, 841–850. [Google Scholar] [CrossRef]
- Torres, L.G.; Nieukirk, S.L.; Lemos, L.; Chandler, T.E. Drone up! Quantifying whale behavior from a new perspective improves observational capacity. Front. Mar. Sci. 2018, 5, 319. [Google Scholar] [CrossRef] [Green Version]
- Aoki, K.; Isojunno, S.; Bellot, C.; Iwata, T.; Kershaw, J.; Akiyama, Y.; López, L.M.M.; Ramp, C.; Biuw, M.; Swift, R.; et al. Aerial photogrammetry and tag-derived tissue density reveal patterns of lipid-store body condition of humpback whales on their feeding grounds. Proc. R Soc. B Biol. Sci. 2021, 288, 20202307. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, F.; Sironi, M.; Moore, M.J.; Di Martino, M.; Ricciardi, M.; Warick, H.A.; Irschick, D.J.; Gutierrez, R.; Uhart, M.M. Estimating body mass of free-living whales using aerial photogrammetry and 3D volumetrics. Methods Ecol Evol. 2019, 10, 2034–2044. [Google Scholar] [CrossRef]
- Christiansen, F.; Sironi, M.; Moore, M.J.; Di Martino, M.; Ricciardi, M.; Warick, H.A.; Irschick, D.J.; Gutierrez, R.; Uhart, M.M. Estimating body mass of sperm whales from aerial photographs. Mar. Mammal. Sci. 2022, 136–154. [Google Scholar] [CrossRef]
- Monks, J.M.; Wills, H.P.; Knox, C.D. Testing Drones as a Tool for Surveying Lizards. Drones 2022, 6, 199. [Google Scholar] [CrossRef]
- Fettermann, T.; Fiori, L.; Gillman, L.; Stockin, K.A.; Bollard, B. Drone Surveys Are More Accurate Than Boat-Based Surveys of Bottlenose Dolphins (Tursiops truncatus). Drones 2022, 6, 82. [Google Scholar] [CrossRef]
- Jones, I.V.G.P.; Pearsltine, L.G.; Percival, H.F. An Assessment of Small Unmanned Aerial Vehicles for Wildlife Research. Wildl. Soc. Bull. 2006, 34, 750–758. [Google Scholar] [CrossRef]
- Hodgson, J.C.; Mott, R.; Baylis, S.M.; Pham, T.T.; Wotherspoon, S.; Kilpatrick, A.D.; Segaran, R.R.; Reid, I.; Terauds, A.; Koh, L.P. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 2018, 9, 1160–1167. [Google Scholar] [CrossRef] [Green Version]
- Ramp, C.; Gaspard, D.; Gavrilchuk, K.; Unger, M.; Schleimer, A.; Delarue, J.; Landry, S.; Sears, R. Up in the air: Drone images reveal underestimation of entanglement rates in large rorqual whales. Endanger. Species Res. 2021, 44, 33–44. [Google Scholar] [CrossRef]
- Chabot, D.; Bird, D.M. Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in? J. Unmanned. Veh. Syst. 2015, 3, 137–155. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, F.; Rojano-Doñate, L.; Madsen, P.T.; Bejder, L. Noise levels of multi-rotor unmanned aerial vehicles with implications for potential underwater impacts on marine mammals. Front. Mar. Sci. 2016, 3, 277. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, C.; Lydersen, C.; Aars, J.; Biuw, M.; Boltunov, A.N.; Born, E.W.; Dietz, R.; Folkow, L.P.; Glazov, D.M.; Haug, T.; et al. Marine mammal hotspots in the Greenland and Barents Seas. Mar. Ecol. Prog. Ser. 2021, 659, 3–28. [Google Scholar] [CrossRef]
- Ramm, T. Hungry During Migration? Humpback Whale Movement from the Barents Sea to a Feeding Stopover in Northern Norway Revealed by Photo-ID Analysis. 2020. Available online: https://munin.uit.no/handle/10037/19109 (accessed on 15 September 2022).
- Kettemer, L.E.; Rikardsen, A.H.; Biuw, M.; Broms, F.; Mul, E.; Blanchet, M.-A. Round-trip migration and energy budget of a breeding female humpback whale in the Northeast Atlantic. PLoS ONE 2022, 17, e0268355. [Google Scholar] [CrossRef] [PubMed]
- Sprogis, K.R.; Videsen, S.; Madsen, P.T. Vessel noise levels drive behavioural responses of humpback whales with implications for whale-watching. Elife 2020, 9, e56760. [Google Scholar] [CrossRef]
- Palomino-González, A.; Kovacs, K.M.; Lydersen, C.; Ims, R.A.; Lowther, A.D. Drones and marine mammals in Svalbard, Norway. Mar. Mammal. Sci. 2021, 37, 1212–1229. [Google Scholar] [CrossRef]
- Raoult, V.; Colefax, A.P.; Allan, B.M.; Cagnazzi, D.; Castelblanco-Martínez, N.; Ierodiaconou, D.; Johnston, D.; Yauri, S.L.; Lyons, M.; Pirotta, V.; et al. Operational protocols for the use of drones in marine animal research. Drones 2020, 4, 64. [Google Scholar] [CrossRef]
Day | Flight | Start | Total | Successful/ Unsuccessful | Group ID | Group Size (Indiv. Sampled) | Hours of Light | T °C | Wind (km/h) |
---|---|---|---|---|---|---|---|---|---|
23 November 2021 | 1 | 10 h 06 | 4 min | Unsuccessful | - | - | 1 h 32 of daylength (6 h 05 of CV) | −5/−6 °C | 21–26 km/h |
2 | 10 h 17 | 5 min | Unsuccessful | - | - | ||||
3 | 10 h 28 | 1 min | Unsuccessful | - | - | ||||
24 November 2021 | 5 | 12 h 29 | 12 min | Unsuccessful | - | - | 1 h 02 of day length (5 h 58 of CV) | −1/−8 °C | 9–19 km/h |
25 November 2021 | 6 | 08 h 02 | 4 min | Unsuccessful | - | - | Sundown all day (5 h 52 of CV) | −8/−11 °C | 24–27 km/h |
7 | 08 h 09 | 5 min | Successful | Group 1 | 4 (2) | ||||
8 | 08 h 38 | 5 min | Control | - | - | ||||
9 | 09 h 12 | 5 min | Successful | Group 2 | 5 (3) | ||||
10 | 9 h 38 | 3 min | Unsuccessful | - | - | ||||
11 | 09 h 49 | 3 min | Unsuccessful | - | - | ||||
12 | 09 h 53 | 6 min | Successful | Group 3 | 12–14 (2) | ||||
13 | 10 h 09 | 4 min | Successful | ||||||
14 | 10 h 51 | 2 min | Unsuccessful | - | - | ||||
15 | 11 h 26 | 4 min | Successful | Group 4 | 6–8 (3) | ||||
16 | 11 h 47 | 8 min | Control | - | - | ||||
17 | 12 h 06 | 13 min | Unsuccessful | - | - | ||||
26 November 2021 | 18 | 08 h 07 | 2 min | Unsuccessful | - | - | Sundown all day (5 h 45 of CV) | −8/−9 °C | 21 km/h |
19 | 08 h 22 | 3 min | Successful | Group 5 | 4 (1) | ||||
20 | 08 h 52 | 4 min | Successful | Group 6 | 3 (1) | ||||
21 | 09 h 54 | 4 min | Successful | ||||||
22 | 10 h 43 | 2 min | Unsuccessful | - | - | ||||
23 | 11 h 52 | 4 min | Successful | Group 7 | 5 (3) | ||||
24 | 12 h 03 | 5 min | Successful | ||||||
25 | 12 h 17 | 3 min | Successful | ||||||
26 | 12 h 30 | 5 min | Control | - | - | ||||
27 November 2021 | 27 | 10 h 06 | 9 min | Successful | Group 8 | 2 (2) | Sundown all day (5 h 38 of CV) | −7/−9 °C | 17–30 km/h |
28 | 10 h 43 | 14 min | Successful | ||||||
29 | 11 h 51 | 2 min | Successful | Group 9 | 6 (3) | ||||
30 | 11 h 53 | 4 min | Unsuccessful | - | - | ||||
31 | 12 h 21 | 2 min | Successful | Group 10 | 2 (1) | ||||
32 | 12 h 41 | 6 min | Control | - | - | ||||
28 November 2021 | 33 | 11 h 20 | 3 min | Control | - | - | Sundown all day (5 h 32 of CV) | −1/−18 °C | 31 km/h |
34 | 11 h 30 | 4 min | Successful | Group 11 | 6–7 (2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, H.; Rogan, A.; Zadra, C.; Larsen, O.; Rikardsen, A.H.; Waugh, C. Blowing in the Wind: Using a Consumer Drone for the Collection of Humpback Whale (Megaptera novaeangliae) Blow Samples during the Arctic Polar Nights. Drones 2023, 7, 15. https://doi.org/10.3390/drones7010015
Costa H, Rogan A, Zadra C, Larsen O, Rikardsen AH, Waugh C. Blowing in the Wind: Using a Consumer Drone for the Collection of Humpback Whale (Megaptera novaeangliae) Blow Samples during the Arctic Polar Nights. Drones. 2023; 7(1):15. https://doi.org/10.3390/drones7010015
Chicago/Turabian StyleCosta, Helena, Andrew Rogan, Christopher Zadra, Oddbjørn Larsen, Audun H. Rikardsen, and Courtney Waugh. 2023. "Blowing in the Wind: Using a Consumer Drone for the Collection of Humpback Whale (Megaptera novaeangliae) Blow Samples during the Arctic Polar Nights" Drones 7, no. 1: 15. https://doi.org/10.3390/drones7010015
APA StyleCosta, H., Rogan, A., Zadra, C., Larsen, O., Rikardsen, A. H., & Waugh, C. (2023). Blowing in the Wind: Using a Consumer Drone for the Collection of Humpback Whale (Megaptera novaeangliae) Blow Samples during the Arctic Polar Nights. Drones, 7(1), 15. https://doi.org/10.3390/drones7010015