Transferability of Models for Predicting Rice Grain Yield from Unmanned Aerial Vehicle (UAV) Multispectral Imagery across Years, Cultivars and Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Yield Data Collection
2.3. UAV, Sensor, and Image Acquisition
2.4. Calculation of VIs and Texture Indices
2.5. Meteorological Data Collection and Analysis
2.6. Model Calibration and Validation
3. Results
3.1. Variations of Rice Grain Yield and Meteorological Factors
3.2. Relationships of VIs and Texture Indices with Rice Grain Yield
3.3. Validation of Yield Prediction Models
3.3.1. Model Validation across Different Years
3.3.2. Model Validation across Different Rice Cultivars
3.3.3. Model Validation across Different Sensors
3.3.4. Yield Prediction with Random Forest
4. Discussion
4.1. Advantages of Texture Information on Predicting Rice Grain Yield
4.2. Influence of Rice Cultivar and Year on Yield Prediction
4.3. The Variable Performance of Different Sensors on Rice Grain Yield Prediction
4.4. Implications for Further Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cantrell, R.P.; Reeves, T.G. The cereal of the world’s poor takes center stage. Science 2002, 296, 53. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, Y.; Taylor, J.; Gaulton, R.; Jin, X.; Song, X.; Li, Z.; Meng, Y.; Chen, P.; Feng, H.; et al. Comparison and transferability of thermal, temporal and phenological-based in-season predictions of above-ground biomass in wheat crops from proximal crop reflectance data. Remote Sens. Environ. 2022, 273, 112967. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; Chen, Y.; Du, K.; Zheng, F.; Zhang, L.; Sun, Z. Estimating above ground biomass of winter wheat at early growth stages using digital images and deep convolutional neural network. Eur. J. Agron. 2019, 103, 117–129. [Google Scholar] [CrossRef]
- Nandan, R.; Bandaru, V.; He, J.Y.; Daughtry, C.; Gowda, P.; Suyker, A.E. Evaluating optical remote sensing methods for estimating leaf area index for corn and soybean. Remote Sens. 2022, 14, 5301. [Google Scholar] [CrossRef]
- Liang, L.; Geng, D.; Yan, J.; Qiu, S.Y.; Di, L.P.; Wang, S.G.; Xu, L.; Wang, L.J.; Kang, J.R.; Li, L. Estimating crop LAI using spectral feature extraction and the hybrid inversion method. Remote Sens. 2020, 12, 3534. [Google Scholar] [CrossRef]
- Li, D.; Chen, J.M.; Yu, W.; Zheng, H.; Yao, X.; Cao, W.; Wei, D.; Xiao, C.; Zhu, Y.; Cheng, T. Assessing a soil-removed semi-empirical model for estimating leaf chlorophyll content. Remote Sens. Environ. 2022, 282, 113284. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bali, S.K. A review of methods to improve nitrogen use efficiency in agriculture. Sustainability 2018, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Carella, E.; Orusa, T.; Viani, A.; Meloni, D.; Borgogno-Mondino, E.; Orusa, R. An integrated, tentative remote-sensing approach based on NDVI entropy to model canine distemper virus in wildlife and to prompt science-based management policies. Animals 2022, 12, 1049. [Google Scholar] [CrossRef]
- Mustafa, G.; Zheng, H.; Khan, I.H.; Tian, L.; Jia, H.; Li, G.; Cheng, T.; Tian, Y.; Cao, W.; Zhu, Y.; et al. Hyperspectral reflectance proxies to diagnose in-field fusarium head blight in wheat with machine learning. Remote Sens. 2022, 14, 2784. [Google Scholar] [CrossRef]
- Vallentin, C.; Harfenmeister, K.; Itzerott, S.; Kleinschmit, B.; Conrad, C.; Spengler, D. Suitability of satellite remote sensing data for yield estimation in northeast Germany. Precis. Agric. 2022, 23, 52–82. [Google Scholar] [CrossRef]
- Dong, J.; Lu, H.B.; Wang, Y.W.; Ye, T.; Yuan, W.P. Estimating winter wheat yield based on a light use efficiency model and wheat variety data. ISPRS J. Photogramm. Remote Sens. 2020, 160, 18–32. [Google Scholar] [CrossRef]
- Yang, W.; Nigon, T.; Hao, Z.; Paiao, G.D.; Yang, C. Estimation of corn yield based on hyperspectral imagery and convolutional neural network. Comput. Electron. Agric. 2021, 184, 106092. [Google Scholar] [CrossRef]
- Zhang, K.; Ge, X.; Shen, P.; Li, W.; Liu, X.; Cao, Q.; Zhu, Y.; Cao, W.; Tian, Y. Predicting rice grain yield based on dynamic changes in vegetation indexes during early to mid-growth stages. Remote Sens. 2019, 11, 387. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wang, L.; Tian, T.; Yin, J. A review of unmanned aerial vehicle low-altitude remote sensing (UAV-LARS) use in agricultural monitoring in China. Remote Sens. 2021, 13, 1221. [Google Scholar] [CrossRef]
- Chang, A.; Jung, J.; Maeda, M.M.; Landivar, J. Crop height monitoring with digital imagery from Unmanned Aerial System (UAS). Comput. Electron. Agric. 2017, 141, 232–237. [Google Scholar] [CrossRef]
- Volpato, L.; Pinto, F.; Gonzalez-Perez, L.; Thompson, I.G.; Borem, A.; Reynolds, M.; Gerard, B.; Molero, G.; Rodrigues, F.A., Jr. High throughput field phenotyping for plant height using UAV-based RGB imagery in wheat breeding lines: Feasibility and validation. Front. Plant Sci. 2021, 12, 591587. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, K.; Sun, Y.; Zhao, Y.; Zhuang, H.; Ban, W.; Chen, Y.; Fu, E.; Chen, S.; Liu, J.; et al. Combining spectral and texture features of UAS-based multispectral images for maize leaf area index estimation. Remote Sens. 2022, 14, 331. [Google Scholar] [CrossRef]
- Zhou, C.; Gong, Y.; Fang, S.; Yang, K.; Peng, Y.; Wu, X.; Zhu, R. Combining spectral and wavelet texture features for unmanned aerial vehicles remote estimation of rice leaf area index. Front. Plant Sci. 2022, 13, 957870. [Google Scholar] [CrossRef]
- Lu, N.; Zhou, J.; Han, Z.; Li, D.; Cao, Q.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cheng, T. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods 2019, 15, 17. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Cheng, T.; Zhou, M.; Li, D.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery. Precis. Agric. 2019, 20, 611–629. [Google Scholar] [CrossRef]
- Lu, N.; Wang, W.; Zhang, Q.; Li, D.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Baret, F.; Liu, S.; et al. Estimation of nitrogen nutrition status in winter wheat from unmanned aerial vehicle based multi-angular multispectral imagery. Front. Plant Sci. 2019, 10, 1601. [Google Scholar] [CrossRef] [Green Version]
- Jay, S.; Baret, F.; Dutartre, D.; Malatesta, G.; Heno, S.; Comar, A.; Weiss, M.; Maupas, F. Exploiting the centimeter resolution of UAV multispectral imagery to improve remote-sensing estimates of canopy structure and biochemistry in sugar beet crops. Remote Sens. Environ. 2019, 231, 110898. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, H.; Wu, Y.; Yao, X.; Zhu, Y.; Cao, W.; Cheng, T. An assessment of background removal approaches for improved estimation of rice leaf nitrogen concentration with unmanned aerial vehicle multispectral imagery at various observation times. Field Crops Res. 2022, 283, 108543. [Google Scholar] [CrossRef]
- Nevavuori, P.; Narra, N.; Linna, P.; Lipping, T. Crop yield prediction using multitemporal UAV data and spatio-temporal deep learning models. Remote Sens. 2020, 12, 4000. [Google Scholar] [CrossRef]
- Wan, L.; Cen, H.; Zhu, J.; Zhang, J.; Zhu, Y.; Sun, D.; Du, X.; Zhai, L.; Weng, H.; Li, Y.; et al. Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer—A case study of small farmlands in the South of China. Agric. For. Meteorol. 2020, 291, 108096. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, H.; Xu, X.; He, J.; Ge, X.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. Remote Sens. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Maresma, A.; Chamberlain, L.; Tagarakis, A.; Kharel, T.; Ketterings, Q.M. Accuracy of NDVI-derived corn yield predictions is impacted by time of sensing. Comput. Electron. Agric. 2020, 169, 105236. [Google Scholar] [CrossRef]
- Ramos, A.; Osco, L.P.; Furuya, D.; Gonalves, W.N.; Pistori, H. A random forest ranking approach to predict yield in maize with UAV-based vegetation spectral indices. Comput. Electron. Agric. 2020, 178, 105791. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens. Environ. 2020, 237, 111599. [Google Scholar] [CrossRef]
- Nevavuori, P.; Narra, N.; Lipping, T. Crop yield prediction with deep convolutional neural networks. Comput. Electron. Agric. 2019, 163, 104859. [Google Scholar] [CrossRef]
- Shafiee, S.; Lied, L.M.; Burud, I.; Dieseth, J.A.; Lillemo, M. Sequential forward selection and support vector regression in comparison to LASSO regression for spring wheat yield prediction based on UAV imagery. Comput. Electron. Agric. 2021, 183, 106036. [Google Scholar] [CrossRef]
- Fei, S.P.; Hassan, M.A.; Xiao, Y.G.; Su, X.; Chen, Z.; Cheng, Q.; Duan, F.Y.; Chen, R.Q.; Ma, Y.T. UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat. Precis. Agric. 2022. [Google Scholar] [CrossRef]
- Deng, L.; Mao, Z.; Li, X.; Hu, Z.; Duan, F.; Yan, Y. UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras. ISPRS J. Photogramm. Remote Sens. 2018, 146, 124–136. [Google Scholar] [CrossRef]
- Wang, F.M.; Yi, Q.X.; Hu, J.H.; Xie, L.L.; Yao, X.P.; Xu, T.Y.; Zheng, J.Y. Combining spectral and textural information in UAV hyperspectral images to estimate rice grain yield. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102397. [Google Scholar] [CrossRef]
- Duan, B.; Fang, S.; Gong, Y.; Peng, Y.; Wu, X.; Zhu, R. Remote estimation of grain yield based on UAV data in different rice cultivars under contrasting climatic zone. Field Crops Res. 2021, 267, 108148. [Google Scholar] [CrossRef]
- Garcia-Martinez, H.; Flores-Magdaleno, H.; Ascencio-Hernandez, R.; Khalil-Gardezi, A.; Tijerina-Chavez, L.; Mancilla-Villa, O.R.; Vazquez-Pena, M.A. Corn grain yield estimation from vegetation indices, canopy cover, plant density, and a neural network using multispectral and RGB images acquired with unmanned aerial vehicles. Agriculture 2020, 10, 277. [Google Scholar] [CrossRef]
- Fu, Z.; Jiang, J.; Gao, Y.; Krienke, B.; Wang, M.; Zhong, K.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; et al. Wheat growth monitoring and yield estimation based on multi-rotor unmanned aerial vehicle. Remote Sens. 2020, 12, 508. [Google Scholar] [CrossRef] [Green Version]
- Tao, H.L.; Feng, H.K.; Xu, L.J.; Miao, M.K.; Yang, G.J.; Yang, X.D.; Fan, L.L. Estimation of the yield and plant height of winter wheat using UAV-based hyperspectral images. Sensors 2020, 20, 1231. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wang, F.; Zhang, Y.; Hu, J.; Huang, J.; Xie, J. Rice yield estimation using parcel-level relative spectral variables from UAV-based hyperspectral imagery. Front. Plant Sci. 2019, 10, 453. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Zhao, J.M.; Yang, G.J.; Liu, J.G.; Cao, J.Q.; Li, C.Y.; Zhao, X.Q.; Gai, J.Y. Establishment of plot-yield prediction models in soybean breeding programs using UAV-based hyperspectral remote sensing. Remote Sens. 2019, 11, 2752. [Google Scholar] [CrossRef]
- Duan, B.; Fang, S.; Zhu, R.; Wu, X.; Wang, S.; Gong, Y.; Peng, Y. Remote estimation of rice yield with unmanned aerial vehicle (UAV) data and spectral mixture analysis. Front. Plant Sci. 2019, 10, 204. [Google Scholar] [CrossRef] [Green Version]
- Kanning, M.; Kuhling, I.; Trautz, D.; Jarmer, T. High-resolution UAV-based hyperspectral imagery for LAI and chlorophyll estimations from wheat for yield prediction. Remote Sens. 2018, 10, 2000. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Noguchi, N. Monitoring of wheat growth status and mapping of wheat yield’s within-field spatial variations using color images acquired from UAV-camera system. Remote Sens. 2017, 9, 289. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M.; Shanmugam, K. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 6, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Sarker, L.R.; Nichol, J.E. Improved forest biomass estimates using ALOS AVNIR-2 texture indices. Remote Sens. Environ. 2011, 115, 968–977. [Google Scholar] [CrossRef]
- Trifi, M.; Gasmi, A.; Carbone, C.; Majzlan, J.; Nasri, N.; Dermech, M.; Charef, A.; Elfil, H. Machine learning-based prediction of toxic metals concentration in an acid mine drainage environment, northern Tunisia. Environ. Sci. Pollut. Res. 2022, 29, 87490–87508. [Google Scholar] [CrossRef]
- Zheng, H.; Cheng, T.; Li, D.; Zhou, X.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Evaluation of RGB, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice. Remote Sens. 2018, 10, 824. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Wu, Y.; Zhang, Q.; Zheng, H.; Yao, X.; Zhu, Y.; Cao, W.; Cheng, T. AAVI: A novel approach to estimating leaf nitrogen concentration in rice from unmanned aerial vehicle multispectral imagery at early and middle growth stages. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6716–6728. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves—Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Asner, G.P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ. 1998, 64, 234–253. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices. ISPRS J. Photogramm. Remote Sens. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Hatfield, J.; Gitelson, A.A.; Schepers, J.S.; Walthall, C. Application of spectral remote sensing for agronomic decisions. Agron. J. 2008, 100, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Gasmi, A.; Gomez, C.; Chehbouni, A.; Dhiba, D.; El Gharous, M. Using PRISMA hyperspectral satellite imagery and GIS approaches for soil fertility mapping (FertiMap) in northern Morocco. Remote Sens. 2022, 14, 4080. [Google Scholar] [CrossRef]
- Yang, J.C.; Zhang, J.H. Grain-filling problem in ‘super’ rice. J. Exp. Bot. 2010, 61, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Yang, C. A review on plant high-throughput phenotyping traits using UAV-based sensors. Comput. Electron. Agric. 2020, 178, 105731. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yang, M.; Fu, L.; Rasheed, A.; Zheng, B.; Xia, X.; Xiao, Y.; He, Z. Accuracy assessment of plant height using an unmanned aerial vehicle for quantitative genomic analysis in bread wheat. Plant Methods 2019, 15, 37. [Google Scholar] [CrossRef] [Green Version]
- Melandri, G.; AbdElgawad, H.; Riewe, D.; Hageman, J.A.; Asard, H.; Beemster, G.T.S.; Kadam, N.; Jagadish, K.; Altmann, T.; Ruyter-Spira, C.; et al. Biomarkers for grain yield stability in rice under drought stress. J. Exp. Bot. 2020, 71, 669–683. [Google Scholar] [CrossRef]
Reference | Crop | UAV Sensor | Method | Accuracy | Validation |
---|---|---|---|---|---|
[32] | Wheat | RedEdge-MX, Zenmuse XT2 | Ensemble learning | R2 = 0.692, RMSE = 0.916 t ha−1, | Cross-validation |
[34] | Rice | Rikola | Multiple linear regression | RMSE = 0.521 Mg ha−1, MAPE = 6.63% | Independent validation |
[35] | Rice | Mini-MCA12 | Neural network regression | R2 = 0.57, RMSE = 47.895 g m−2, RRMSE = 5.3% | Cross-validation |
[13] | Rice | MQ022MG-CM, Sony NEX-7 | Random forest | R2 = 0.83, RRMSE = 2.75% | Cross-validation |
[27] | Corn | Parrot Sequoia | Exponential regression | R2 = 0.63 | × |
[28] | Maize | Parrot Sequoia, RedEdge-M | Random forest | r = 0.78, MAE = 853.11 kg ha−1 | Cross-validation |
[24] | Wheat, Barley | Parrot Sequoia | 3D- Convolutional neural network | MAE = 218.9 kg ha−1, MAPE = 5.51% | Cross-validation |
[36] | Corn | Parrot Sequoia, DJI RGB | Neural network model | r = 0.96, MAE = 0.209 kg ha−1, RMSE = 0.449 kg ha−1 | Independent validation |
[37] | Wheat | Airphen | Random forest | R2 = 0.78, RRMSE = 10.3% | Independent validation |
[29] | Soybean | Mapir Survey-2, Parrot Sequoia, FLIR R 640 | Deep neural network | R2 = 0.72, RMSE = 478.9 kg ha−1, RRMSE = 15.9% | Independent validation |
[38] | Winter wheat | UHD 185 | Partial least-squares regression | R2 = 0.77, RMSE = 648.90 kg ha−1, NRMSE = 10.63% | Independent validation |
[39] | Rice | Rikola | Multiple linear regression | RMSE = 215.08 kg ha−1, RRMSE = 3% | Cross-validation |
[40] | Soybean | UHD 185 | Linear regression | R2 = 0.67, RMSE = 0.142 t ha−1 | Cross-validation |
[30] | Wheat, Barley | Parrot Sequoia | Convolutional neural network | MAE = 484.3 kg ha−1, MAPE = 8.8% | Cross-validation |
[41] | Rice | Mini-MCA6 | Linear regression | R2 = 0.593, RMSE = 0.268 kg | Cross-validation |
[42] | Wheat | Resonon Pika-L | Partial least-squares regression | R2 = 0.88, RMSE = 4.18 dt ha−1 | Cross-validation |
[43] | Wheat | Sony ILCE-6000 | Stepwise regression | r = 0.69, RSMEP = 0.06 t ha−1 | Cross-validation |
[26] | Rice | Mini-MCA6, Cannon 5D | Multiple linear regression | R2 = 0.76 | × |
Exp | Year | Site | Rice Cultivar | N Rate (kg/ha) | Density (cm) | UAV Flight Date | Sampling Date | Sample Size |
---|---|---|---|---|---|---|---|---|
1 | 2015 | Rugao | Wuyunjing24 (Japonica) Yliangyou1 (Indica) | 0, 100, 200, 300 | 30 × 15 | 14 August (Booting) | 15 August | 36 |
50 × 15 | 9 September (Filling) | 10 September | 36 | |||||
2 | 2016 | Rugao | Wuyunjing24 (Japonica) Yliangyou1 (Indica) | 0, 150, 300 | 30 × 15 | 14 August (Booting) | 14 August | 36 |
50 × 15 | 8 September (Filling) | 8 September | 36 | |||||
3 | 2018 | Rugao | Wuyunjing27 (Japonica) Liangyou728 (Indica) | 100, 300 | 30 × 15 | 14 August (Booting) | 14 August | 48 |
4 September (Filling) | 4 September | 48 | ||||||
4 | 2018 | Xinghua | Nangeng9108 (Japonica) Yongyou2640 (Indica) | 0, 135, 270, 405 | 30 × 15 | 19 August (Booting) | 19 August | 48 |
11 September (Filling) | 11 September | 48 |
Vegetation Index | Formulation | Reference |
---|---|---|
Visible atmospherically resistant index (VARI) | [49] | |
Normalized difference vegetation index (NDVI) | [50] | |
Optimized soil-adjusted vegetation index (OSAVI) | [51] | |
Normalized difference red edge index (NDRE) | [52] | |
Red edge normalized difference texture index (RENDTI) | [20] | |
Green normalized difference texture index (GNDTI) | [20] |
Exp | Cultivar | Min | Max | Mean | SD | C.V |
---|---|---|---|---|---|---|
1 | Japonica | 4.96 | 13.59 | 9.196 | 2.406 | 26.16% |
Indica | 6.34 | 14.33 | 10.97 | 2.297 | 20.94% | |
2 | Japonica | 4.6 | 12.4 | 8.611 | 2.401 | 27.88% |
Indica | 7.4 | 12.6 | 10.44 | 1.773 | 16.98% | |
3 | Japonica | 4.98 | 10.66 | 7.753 | 1.832 | 23.63% |
Indica | 9.19 | 11.5 | 10.13 | 0.639 | 6.31% | |
4 | Japonica | 7.31 | 13.02 | 10.24 | 1.687 | 16.47% |
Indica | 7.06 | 12.51 | 10.69 | 1.553 | 14.53% |
Stage | Index | 2016 to 2015 | 2016 to 2018 | ||||
---|---|---|---|---|---|---|---|
RMSE | Bias | RRMSE | RMSE | Bias | RRMSE | ||
Booting | VARI | 2.52 | 1.81 | 24.97% | 1.63 | 0.15 | 18.21% |
NDVI | 1.81 | 1.28 | 17.96% | 1.67 | −0.39 | 18.62% | |
OSAVI | 1.75 | 1.22 | 17.40% | 2.72 | −1.59 | 30.36% | |
NDRE | 1.36 | 0.74 | 13.53% | 2.26 | −1.60 | 25.31% | |
RENDTI | 1.23 | 0.42 | 12.25% | 2.09 | −1.78 | 23.38% | |
GNDTI | 1.25 | −0.27 | 12.35% | 1.34 | −0.78 | 14.97% | |
Filling | VARI | 4.66 | −3.95 | 46.23% | 3.52 | −3.14 | 39.40% |
NDVI | 3.03 | −2.38 | 30.03% | 1.30 | −0.16 | 14.50% | |
OSAVI | 1.59 | 0.72 | 15.74% | 1.38 | −0.21 | 15.43% | |
NDRE | 1.85 | −1.25 | 18.36% | 1.19 | −0.34 | 13.32% | |
RENDTI | 1.43 | −0.25 | 14.16% | 1.24 | −0.36 | 13.86% | |
GNDTI | 5.95 | −5.65 | 59.01% | 2.56 | −2.04 | 28.62% |
Stage | Index | Indica to Japonica | Japonica to Indica | ||||
---|---|---|---|---|---|---|---|
RMSE | Bias | RRMSE | RMSE | Bias | RRMSE | ||
Booting | VARI | 2.26 | −0.93 | 26.75% | 1.84 | 1.30 | 17.55% |
NDVI | 1.72 | −0.15 | 20.35% | 1.28 | 0.58 | 12.20% | |
OSAVI | 2.10 | −0.84 | 24.83% | 1.55 | 0.71 | 14.76% | |
NDRE | 2.02 | −1.04 | 23.94% | 1.72 | −0.12 | 16.46% | |
RENDTI | 1.93 | −1.08 | 22.87% | 1.64 | 0.14 | 15.61% | |
GNDTI | 1.39 | −0.60 | 16.46% | 1.16 | 0.08 | 11.04% | |
Filling | VARI | 2.65 | −1.73 | 31.39% | 2.21 | 1.58 | 21.10% |
NDVI | 2.26 | −1.52 | 26.74% | 1.99 | 1.41 | 18.97% | |
OSAVI | 1.59 | 0.32 | 18.83% | 1.18 | −0.29 | 11.22% | |
NDRE | 1.85 | −1.36 | 21.97% | 1.70 | 1.37 | 16.23% | |
RENDTI | 1.87 | −1.44 | 22.21% | 1.74 | 1.47 | 16.56% | |
GNDTI | 1.81 | 0.76 | 21.49% | 2.24 | 1.81 | 21.43% |
Stage | Index | MCA to Airphen | Airphen to MCA | ||||
---|---|---|---|---|---|---|---|
RMSE | Bias | RRMSE | RMSE | Bias | RRMSE | ||
Booting | VARI | 2.56 | 2.18 | 24.44% | 2.67 | −2.12 | 29.82% |
NDVI | 2.10 | 1.86 | 20.10% | 2.33 | −1.90 | 26.07% | |
OSAVI | 2.90 | 2.64 | 27.74% | 3.88 | −3.50 | 43.33% | |
NDRE | 3.87 | 3.74 | 36.97% | 5.66 | −5.44 | 63.32% | |
RENDTI | 2.60 | 2.44 | 24.83% | 3.06 | −2.82 | 34.26% | |
GNDTI | 1.69 | 1.49 | 16.13% | 1.82 | −1.49 | 20.40% | |
Filling | VARI | 5.90 | 5.69 | 56.37% | 4.92 | −4.67 | 55.05% |
NDVI | 3.08 | 2.89 | 29.41% | 3.01 | −2.72 | 33.62% | |
OSAVI | 5.11 | 4.98 | 48.83% | 5.17 | −5.02 | 57.83% | |
NDRE | 4.28 | 4.18 | 40.91% | 4.18 | −4.02 | 46.70% | |
RENDTI | 3.03 | 2.89 | 28.94% | 3.11 | −2.88 | 34.77% | |
GNDTI | 3.50 | 3.34 | 33.41% | 3.43 | −3.12 | 38.30% |
Stage | Index | MCA Models Applied to Airphen | Airphen Models Applied to MCA | ||||
---|---|---|---|---|---|---|---|
RMSE | Bias | RRMSE | RMSE | Bias | RRMSE | ||
Booting | NDRE | 3.28 | 3.14 | 31.38% | 2.26 | −1.89 | 25.30% |
RENDTI | 1.70 | 1.47 | 16.23% | 1.80 | 1.38 | 20.12% | |
Filling | NDRE | 2.60 | 2.40 | 24.82% | 2.17 | −1.80 | 24.29% |
RENDTI | 1.29 | 0.88 | 12.37% | 1.36 | −0.56 | 15.21% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Ji, W.; Wang, W.; Lu, J.; Li, D.; Guo, C.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y.; et al. Transferability of Models for Predicting Rice Grain Yield from Unmanned Aerial Vehicle (UAV) Multispectral Imagery across Years, Cultivars and Sensors. Drones 2022, 6, 423. https://doi.org/10.3390/drones6120423
Zheng H, Ji W, Wang W, Lu J, Li D, Guo C, Yao X, Tian Y, Cao W, Zhu Y, et al. Transferability of Models for Predicting Rice Grain Yield from Unmanned Aerial Vehicle (UAV) Multispectral Imagery across Years, Cultivars and Sensors. Drones. 2022; 6(12):423. https://doi.org/10.3390/drones6120423
Chicago/Turabian StyleZheng, Hengbiao, Wenhan Ji, Wenhui Wang, Jingshan Lu, Dong Li, Caili Guo, Xia Yao, Yongchao Tian, Weixing Cao, Yan Zhu, and et al. 2022. "Transferability of Models for Predicting Rice Grain Yield from Unmanned Aerial Vehicle (UAV) Multispectral Imagery across Years, Cultivars and Sensors" Drones 6, no. 12: 423. https://doi.org/10.3390/drones6120423
APA StyleZheng, H., Ji, W., Wang, W., Lu, J., Li, D., Guo, C., Yao, X., Tian, Y., Cao, W., Zhu, Y., & Cheng, T. (2022). Transferability of Models for Predicting Rice Grain Yield from Unmanned Aerial Vehicle (UAV) Multispectral Imagery across Years, Cultivars and Sensors. Drones, 6(12), 423. https://doi.org/10.3390/drones6120423